

Algebra \& Trigonometry
Tenth Edition

To the Student

As you begin, you may feel anxious about the number of theorems, definitions, procedures, and equations. You may wonder if you can learn it all in time. Don't worry - your concerns are normal. This textbook was written with you in mind. If you attend class, work hard, and read and study this text, you will build the knowledge and skills you need to be successful. Here's how you can use the text to your benefit.

Read Carefully

When you get busy, it's easy to skip reading and go right to the problems. Don't . . the text has a large number of examples and clear explanations to help you break down the mathematics into easy-to-understand steps. Reading will provide you with a clearer understanding, beyond simple memorization. Read before class (not after) so you can ask questions about anything you didn't understand. You'll be amazed at how much more you'll get out of class if you do this.

Use the Features

I use many different methods in the classroom to communicate. Those methods, when incorporated into the text, are called "features." The features serve many purposes, from providing timely review of material you learned before (just when you need it) to providing organized review sessions to help you prepare for quizzes and tests. Take advantage of the features and you will master the material.

To make this easier, we've provided a brief guide to getting the most from this text. Refer to "Prepare for Class," "Practice," and "Review" on the following three pages. Spend fifteen minutes reviewing the guide and familiarizing yourself with the features by flipping to the page numbers provided. Then, as you read, use them. This is the best way to make the most of your text.

Please do not hesitate to contact us, through Pearson Education, with any questions, comments, or suggestions for improving this text. I look forward to hearing from you, and good luck with all of your studies.

Best Wishes!
 Michael Sullivan

Prepare for Class "Read the Book"

Feature	Description	Benefit	Page
Every Chapter Opener begins with . . .			
Chapter-Opening Topic \& Project	Each chapter begins with a discussion of a topic of current interest and ends with a related project.	The Project lets you apply what you learned to solve a problem related to the topic.	402
Internet-Based Projects	The projects allow for the integration of spreadsheet technology that you will need to be a productive member of the workforce.	The projects give you an opportunity to collaborate and use mathematics to deal with issues of current interest.	503
Every Section begins with . . .			
Learning Objectives 2	Each section begins with a list of objectives. Objectives also appear in the text where the objective is covered.	These focus your studying by emphasizing what's most important and where to find it.	423
Sections contain...			
PREPARING FOR THIS SECTION	Most sections begin with a list of key concepts to review with page numbers.	Ever forget what you've learned? This feature highlights previously learned material to be used in this section. Review it, and you'll always be prepared to move forward.	423
Now Work the ‘Are You Prepared?’ Problems	Problems that assess whether you have the prerequisite knowledge for the upcoming section.	Not sure you need the Preparing for This Section review? Work the 'Are You Prepared?' problems. If you get one wrong, you'll know exactly what you need to review and where to review it!	$423,434$
Now Work PROBLEMS	These follow most examples and direct you to a related exercise.	We learn best by doing. You'll solidify your understanding of examples if you try a similar problem right away, to be sure you understand what you've just read.	430,435
WARNING	Warnings are provided in the text.	These point out common mistakes and help you to avoid them.	456
Exploration and Seeing the Concept	These graphing utility activities foreshadow a concept or solidify a concept just presented.	You will obtain a deeper and more intuitive understanding of theorems and definitions.	418, 443
In Words	These provide alternative descriptions of select definitions and theorems.	Does math ever look foreign to you? This feature translates math into plain English.	440
$\triangle \text { calculus }$	These appear next to information essential for the study of calculus.	Pay attention-if you spend extra time now, you'll do better later!	$\begin{array}{r} 205,407 \\ 431 \end{array}$
SHOWCASE EXAMPLES	These examples provide "how-to" instruction by offering a guided, step-by-step approach to solving a problem.	With each step presented on the left and the mathematics displayed on the right, you can immediately see how each step is employed.	334

Model It! Examples and Problems

These examples and problems require you to build a mathematical model from either a verbal description or data. The homework Model It! problems are marked by purple headings.

It is rare for a problem to come in the 447, 475 form "Solve the following equation." Rather, the equation must be developed based on an explanation of the problem. These problems require you to develop models that will allow you to describe the problem mathematically and suggest a solution to the problem.

Practice "Work the Problems"

Feature	Description	Benefit	Page
'Are You Prepared?' Problems	These assess your retention of the prerequisite material you'll need. Answers are given at the end of the section exercises. This feature is related to the Preparing for This Section feature.	Do you always remember what you've learned? Working these problems is the best way to find out. If you get one wrong, you'll know exactly what you need to review and where to review it!	434,440
Concepts and Vocabulary	These short-answer questions, mainly Fill-in-the-Blank, Multiple-Choice and True/False items, assess your understanding of key definitions and concepts in the current section.	It is difficult to learn math without knowing the language of mathematics. These problems test your understanding of the formulas and vocabulary.	434
Skill Building	Correlated with section examples, these problems provide straightforward practice.	It's important to dig in and develop your skills. These problems provide you with ample opportunity to do so.	434-436
Mixed Practice	These problems offer comprehensive assessment of the skills learned in the section by asking problems that relate to more than one concept or objective. These problems may also require you to utilize skills learned in previous sections.	Learning mathematics is a building process. Many concepts are interrelated. These problems help you see how mathematics builds on itself and also see how the concepts tie together.	436-437
Applications and Extensions	These problems allow you to apply your skills to real-world problems. They also allow you to extend concepts learned in the section.	You will see that the material learned within the section has many uses in everyday life.	437-439
Explaining Concepts: Discussion and Writing	"Discussion and Writing" problems are colored red. They support class discussion, verbalization of mathematical ideas, and writing and research projects.	To verbalize an idea, or to describe it clearly in writing, shows real understanding. These problems nurture that understanding. Many are challenging, but you'll get out what you put in.	439
NEW! Retain Your Knowledge	These problems allow you to practice content learned earlier in the course.	Remembering how to solve all the different kinds of problems that you encounter throughout the course is difficult. This practice helps you remember.	439
Now Work PROBLEMS	Many examples refer you to a related homework problem. These related problems are marked by a pencil and orange numbers.	If you get stuck while working problems, look for the closest Now Work problem, and refer to the related example to see if it helps.	$\begin{array}{r} 432,435 \\ 436 \end{array}$
Review Exercises	Every chapter concludes with a comprehensive list of exercises to pratice. Use the list of objectives to determine the objective and examples that correspond to the problems.	Work these problems to ensure that you understand all the skills and concepts of the chapter. Think of it as a comprehensive review of the chapter.	499-501

Review "Study for Quizzes and Tests"

Feature
 Description
 Benefit

The Chapter Review at the end of each chapter contains

Things to Know	A detailed list of important theorems, formulas, and definitions from the chapter.	Review these and you'll know the most important material in the chapter!	497-498
You Should Be Able to...	Contains a complete list of objectives by section, examples that illustrate the objective, and practice exercises that test your understanding of the objective.	Do the recommended exercises and you'll have mastered the key material. If you get something wrong, go back and work through the example listed and try again.	498-499
Review Exercises	These provide comprehensive review and practice of key skills, matched to the Learning Objectives for each section.	Practice makes perfect. These problems combine exercises from all sections, giving you a comprehensive review in one place.	499-501

Chapter Test
About 15-20 problems that can be taken Be prepared. Take the sample practiceproblem wrong, you can watch the Chapter Test Prep Video.

Cumulative Review

These problem sets appear at the end of These problem sets are really important.
each chapter, beginning with Chapter 2. They combine problems from previous chapters, providing an ongoing cumulative review. When you use them in conjunction with the Retain Your Knowledge problems, you will be ready for the final exam.

Completing them will ensure that you are not forgetting anything as you go. This will go a long way toward keeping you primed for the final exam.

The Chapter Projects apply to what The Chapter Projects give you an opportunity
503-504 you've learned in the chapter. Additional projects are available on the Instructor's Resource Center (IRC).
to apply what you've learned in the chapter to the opening topic. If your instructor allows, these make excellent opportunities to work in a group, which is often the best way of learning math

Internet-Based Projects

In selected chapters, a Web-based project is given.

These projects give you an opportunity to collaborate and use mathematics to deal with issues of current interest by using the Internet to research and collect data.

Achieve Your Potential

The author, Michael Sullivan, has developed specific content in MyMathLab ${ }^{\circledR}$ to ensure you have many resources to help you achieve success in mathematics - and beyond! The MyMathLab features described here will help you:

- Review math skills and concepts you may have forgotten

- Retain new concepts as you move through your math course
- Develop skills that will help with your transition to college

Adaptive Study Plan

The Study Plan will help you study more efficiently and effectively.
Your performance and activity are assessed continually in real time, providing a personalized experience based on your individual needs.

Skills for Success

The Skills for Success Modules support your continued success in college. These modules provide tutorials and guidance on a variety of topics, including transitioning to college, online learning, time management, and more.
Additional content is provided to help with the development of professional skills such as resume writing and interview preparation.

Getting Ready

Are you frustrated when you know you learned a math concept in the past, but you can't quite remember the skill when it's time to use it? Don't worry!
The author has included Getting Ready material so you can brush up on forgotten material efficiently by taking a quick skill review quiz to pinpoint the areas where you need help.

Then, a personalized homework assignment provides additional practice on those forgotten concepts, right when you need it.

Retain Your Knowledge

As you work through your math course, these MyMathLab ${ }^{\circledR}$ exercises support ongoing review to help you maintain essential skills.

The ability to recall important math concepts as you continually acquire new mathematical skills will help you be successful in this math course and in your future math courses.

Algebra \& Trigonometry

Tenth Edition

Michael Sullivan

Chicago State University

PEARSON

Editor in Chief: Anne Kelly
Acquisitions Editor: Dawn Murrin
Assistant Editor: Joseph Colella
Program Team Lead: Marianne Stepanian
Program Manager: Chere Bemelmans
Project Team Lead: Peter Silvia
Project Manager: Peggy McMahon
Associate Media Producer: Marielle Guiney
Senior Project Manager, MyMathLab: Kristina Evans
QA Manager, Assessment Content: Marty Wright
Senior Marketing Manager: Michelle Cook
Marketing Manager: Peggy Sue Lucas

Marketing Assistant: Justine Goulart
Senior Author Support/Technology Specialist: Joe Vetere
Procurement Manager: Vincent Scelta
Procurement Specialist: Carol Melville
Text Design: Tamara Newnam
Production Coordination,
Composition, Illustrations: Cenveo ${ }^{\circledR}$ Publisher Services
Associate Director of Design,
USHE EMSS/HSC/EDU: Andrea Nix
Project Manager, Rights and Permissions: Diahanne Lucas Dowridge
Art Director: Heather Scott
Cover Design and Cover Illustration: Tamara Newnam

Acknowledgments of third-party content appear on page C1, which constitutes an extension of this copyright page.
Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective owners, and any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson's products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc. or its affiliates, authors, licensees or distributors.

MICROSOFT ${ }^{\circledR}$ AND WINDOWS ${ }^{\circledR}$ ARE REGISTERED TRADEMARKS OF THE MICROSOFT CORPORATION IN THE U.S.A. AND OTHER COUNTRIES. SCREEN SHOTS AND ICONS REPRINTED WITH PERMISSION FROM THE MICROSOFT CORPORATION. THIS BOOK IS NOT SPONSORED OR ENDORSED BY OR AFFILIATED WITH THE MICROSOFT CORPORATION.

MICROSOFT AND /OR ITS RESPECTIVE SUPPLIERS MAKE NO REPRESENTATIONS ABOUT THE SUITABILITY OF THE INFORMATION CONTAINED IN THE DOCUMENTS AND RELATED GRAPHICS PUBLISHED AS PART OF THE SERVICES FOR ANY PURPOSE. ALL SUCH DOCUMENTS AND RELATED GRAPHICS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. MICROSOFT AND /OR ITS RESPECTIVE SUPPLIERS HEREBY DISCLAIM ALL WARRANTIES AND CONDITIONS WITH REGARD TO THIS INFORMATION, INCLUDING ALL WARRANTIES AND CONDITIONS OF MERCHANTABILITY, WHETHER EXPRESS, IMPLIED OR STATUTORY, FITNESS FOR A PARTICULAR PURPOSE,TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL MICROSOFT AND /OR ITS RESPECTIVE SUPPLIERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF INFORMATION AVAILABLE FROM THE SERVICES. THE DOCUMENTS AND RELATED GRAPHICS CONTAINED HEREIN COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN. MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAY MAKE IMPROVEMENTS AND /OR CHANGES IN THE PRODUCT (S) AND /OR THE PROGRAM (S) DESCRIBED HEREIN AT ANY TIME. PARTIAL SCREEN SHOTS MAY BE VIEWED IN FULL WITHIN THE SOFTWARE VERSION SPECIFIED.

The student edition of this text has been cataloged as follows:

Library of Congress Cataloging-in-Publication Data

Sullivan, Michael, 1942-
Algebra \& trigonometry / Michael Sullivan, Chicago State University. -- Tenth edition. pages cm .
ISBN 978-0-321-99859-0

1. Algebra--Textbooks. 2. Algebra--Study and teaching (Higher) 3. Trigonometry--Textbooks. 4. Trigonometry--Study and teaching (Higher) I. Title. II. Title: Algebra and trigonometry.

QA154.3.S73 2016

512'.13--dc23
2014021731
Copyright © 2016 by Pearson Education, Inc. or its affiliates. All Rights Reserved. Printed in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights \& Permissions department, please visit www.pearsoned.com/permissions/.

PEARSON, ALWAYS LEARNING, and MYMATHLAB are exclusive trademarks in the U.S. and/or other countries owned by Pearson Education, Inc. or its affiliates.

123456789 10-CRK-17161514

Contents

Three Distinct Series xviii
The Contemporary Series xix
Preface to the Instructor xx
Resources for Success xxiv
Applications Index xxvi
R Review 1
R. 1 Real Numbers 2
Work with Sets - Classify Numbers - Evaluate Numerical Expressions

- Work with Properties of Real Numbers
R. 2 Algebra Essentials 17
Graph Inequalities • Find Distance on the Real Number Line • Evaluate Algebraic Expressions • Determine the Domain of a Variable • Use the Laws of Exponents • Evaluate Square Roots • Use a Calculator to Evaluate Exponents • Use Scientific Notation
R. 3 Geometry Essentials 30
Use the Pythagorean Theorem and Its Converse • Know Geometry
Formulas • Understand Congruent Triangles and Similar Triangles
R. 4 Polynomials 39
Recognize Monomials • Recognize Polynomials • Add and Subtract Polynomials • Multiply Polynomials • Know Formulas for Special Products - Divide Polynomials Using Long Division • Work with Polynomials in Two Variables
R. 5 Factoring Polynomials 49
Factor the Difference of Two Squares and the Sum and Difference of Two Cubes • Factor Perfect Squares • Factor a Second-Degree
Polynomial: $x^{2}+B x+C \bullet$ Factor by Grouping \bullet Factor a Second-Degree Polynomial: $A x^{2}+B x+C, A \neq 1 \bullet$ Complete the Square
R. 6 Synthetic Division 58
Divide Polynomials Using Synthetic Division
R. 7 Rational Expressions 62
Reduce a Rational Expression to Lowest Terms • Multiply and Divide Rational Expressions • Add and Subtract Rational Expressions • Use the Least Common Multiple Method - Simplify Complex Rational Expressions
R. 8 nth Roots; Rational Exponents 73
Work with nth Roots • Simplify Radicals • Rationalize Denominators
- Simplify Expressions with Rational Exponents
1 Equations and Inequalities 81
1.1 Linear Equations 82
Solve a Linear Equation • Solve Equations That Lead to Linear Equations - Solve Problems That Can Be Modeled by Linear Equations
1.2 Quadratic Equations 92
Solve a Quadratic Equation by Factoring • Solve a Quadratic Equation by Completing the Square • Solve a Quadratic Equation Using the Quadratic Formula • Solve Problems That Can Be Modeled by Quadratic Equations
1.3 Complex Numbers; Quadratic Equations in the Complex Number System 104
Add, Subtract, Multiply, and Divide Complex Numbers
- Solve Quadratic Equations in the Complex Number System
1.4 Radical Equations; Equations Quadratic in Form; Factorable Equations 113
Solve Radical Equations • Solve Equations Quadratic in Form • Solve Equations by Factoring
1.5 Solving Inequalities 119
Use Interval Notation • Use Properties of Inequalities • Solve Inequalities • Solve Combined Inequalities
1.6 Equations and Inequalities Involving Absolute Value 130
Solve Equations Involving Absolute Value • Solve Inequalities Involving Absolute Value
1.7 Problem Solving: Interest, Mixture, Uniform Motion, Constant Rate Job Applications 134Translate Verbal Descriptions into Mathematical Expressions • SolveInterest Problems • Solve Mixture Problems • Solve Uniform MotionProblems • Solve Constant Rate Job Problems
Chapter Review 143
Chapter Test 147
Chapter Projects 147
2 Graphs 149
2.1 The Distance and Midpoint Formulas 150
Use the Distance Formula - Use the Midpoint Formula
2.2 Graphs of Equations in Two Variables; Intercepts; Symmetry 157
Graph Equations by Plotting Points • Find Intercepts from a Graph • Find Intercepts from an Equation • Test an Equation for Symmetry with Respect to the x-Axis, the y-Axis, and the Origin \bullet Know How to Graph Key Equations
2.3 Lines 167
Calculate and Interpret the Slope of a Line • Graph Lines Given a Point and the Slope • Find the Equation of a Vertical Line • Use the Point-Slope Form of a Line; Identify Horizontal Lines • Find the Equation of a Line Given Two Points • Write the Equation of a Line in Slope-Intercept Form - Identify the Slope and y-Intercept of a Line from Its Equation • Graph Lines Written in General Form Using Intercepts • Find Equations of Parallel Lines • Find Equations of Perpendicular Lines
2.4 Circles 182
Write the Standard Form of the Equation of a Circle • Graph a Circle
- Work with the General Form of the Equation of a Circle
2.5 Variation 188
Construct a Model Using Direct Variation • Construct a Model Using Inverse Variation • Construct a Model Using Joint Variation or Combined Variation

Chapter Review	194
Chapter Test	196
Cumulative Review	196
Chapter Project	197

3 Functions and Their Graphs
3.1 Functions 199
Determine Whether a Relation Represents a Function - Find the Value of a Function • Find the Difference Quotient of a Function • Find the Domain of a Function Defined by an Equation • Form the Sum, Difference, Product, and Quotient of Two Functions
3.2 The Graph of a Function 214
Identify the Graph of a Function • Obtain Information from or about the Graph of a Function
3.3 Properties of Functions 223
Determine Even and Odd Functions from a Graph • Identify Even and
Odd Functions from an Equation • Use a Graph to Determine Where a Function Is Increasing, Decreasing, or Constant • Use a Graph to Locate Local Maxima and Local Minima • Use a Graph to Locate the Absolute Maximum and the Absolute Minimum • Use a Graphing Utility to Approximate Local Maxima and Local Minima and to Determine Where a Function Is Increasing or Decreasing \bullet Find the Average Rate of Change of a Function
3.4 Library of Functions; Piecewise-defined Functions 237
Graph the Functions Listed in the Library of Functions • Graph Piecewise-defined Functions
3.5 Graphing Techniques: Transformations 247
Graph Functions Using Vertical and Horizontal Shifts • Graph Functions Using Compressions and Stretches • Graph Functions Using Reflections about the x-Axis and the y-Axis
3.6 Mathematical Models: Building Functions 260
Build and Analyze Functions

Chapter Review	$\mathbf{2 6 6}$
Chapter Test	$\mathbf{2 7 0}$
Cumulative Review	$\mathbf{2 7 1}$
Chapter Projects	$\mathbf{2 7 1}$

4 Linear and Quadratic Functions 273
4.1 Properties of Linear Functions and Linear Models 274
Graph Linear Functions • Use Average Rate of Change to Identify Linear Functions • Determine Whether a Linear Function Is Increasing, Decreasing, or Constant • Build Linear Models from Verbal Descriptions
4.2 Building Linear Models from Data 284
Draw and Interpret Scatter Diagrams • Distinguish between Linear and Nonlinear Relations • Use a Graphing Utility to Find the Line of Best Fit
4.3 Quadratic Functions and Their Properties 290
Graph a Quadratic Function Using Transformations • Identify the Vertex and Axis of Symmetry of a Quadratic Function • Graph a Quadratic Function Using Its Vertex, Axis, and Intercepts • Find a Quadratic Function Given Its Vertex and One Other Point • Find the Maximum or Minimum Value of a Quadratic Function
4.4 Build Quadratic Models from Verbal Descriptions and from Data 302 Build Quadratic Models from Verbal Descriptions • Build Quadratic Models from Data
4.5 Inequalities Involving Quadratic Functions 312
Solve Inequalities Involving a Quadratic Function

Chapter Review	$\mathbf{3 1 5}$
Chapter Test	$\mathbf{3 1 8}$
Cumulative Review	$\mathbf{3 1 9}$
Chapter Projects	$\mathbf{3 2 0}$

5 Polynomial and Rational Functions 321
5.1 Polynomial Functions and Models 322
Identify Polynomial Functions and Their Degree • Graph Polynomial Functions Using Transformations • Identify the Real Zeros of a Polynomial Function and Their Multiplicity • Analyze the Graph of a Polynomial Function • Build Cubic Models from Data
5.2 Properties of Rational Functions 343
Find the Domain of a Rational Function • Find the Vertical Asymptotes of a Rational Function • Find the Horizontal or Oblique Asymptote of a Rational Function
5.3 The Graph of a Rational Function 353
Analyze the Graph of a Rational Function • Solve Applied Problems Involving Rational Functions
5.4 Polynomial and Rational Inequalities 368
Solve Polynomial Inequalities • Solve Rational Inequalities
5.5 The Real Zeros of a Polynomial Function 375
Use the Remainder and Factor Theorems • Use Descartes' Rule of Signs to Determine the Number of Positive and the Number of Negative Real Zeros of a Polynomial Function • Use the Rational Zeros Theorem to List the Potential Rational Zeros of a Polynomial Function - Find the Real Zeros of a Polynomial Function • Solve Polynomial Equations • Use the Theorem for Bounds on Zeros • Use the Intermediate Value Theorem
5.6 Complex Zeros; Fundamental Theorem of Algebra 390
Use the Conjugate Pairs Theorem • Find a Polynomial Function with Specified Zeros • Find the Complex Zeros of a Polynomial Function
Chapter Review 396
Chapter Test 399
Cumulative Review 399
Chapter Projects 400
6 Exponential and Logarithmic Functions 402
6.1 Composite Functions 403
Form a Composite Function • Find the Domain of a Composite Function
6.2 One-to-One Functions; Inverse Functions 411
Determine Whether a Function Is One-to-One • Determine the Inverse of a Function Defined by a Map or a Set of Ordered Pairs • Obtain the Graph of the Inverse Function from the Graph of the Function • Find the Inverse of a Function Defined by an Equation
6.3 Exponential Functions 423
Evaluate Exponential Functions - Graph Exponential Functions • Define the Number $e \bullet$ Solve Exponential Equations
6.4 Logarithmic Functions
Change Exponential Statements to Logarithmic Statements and Logarithmic Statements to Exponential Statements • Evaluate Logarithmic Expressions • Determine the Domain of a Logarithmic Function • Graph Logarithmic Functions • Solve Logarithmic Equations440
6.5 Properties of Logarithms 452
Work with the Properties of Logarithms • Write a Logarithmic Expression as a Sum or Difference of Logarithms • Write a Logarithmic Expression as a Single Logarithm • Evaluate Logarithms Whose Base Is Neither 10 Nor e
6.6 Logarithmic and Exponential Equations 461
Solve Logarithmic Equations • Solve Exponential Equations • Solve Logarithmic and Exponential Equations Using a Graphing Utility
6.7 Financial Models 468
Determine the Future Value of a Lump Sum of Money •Calculate Effective Rates of Return • Determine the Present Value of a Lump Sum of Money • Determine the Rate of Interest or the Time Required to Double a Lump Sum of Money
6.8 Exponential Growth and Decay Models; Newton's Law; Logistic Growth and Decay Models 478 Find Equations of Populations That Obey the Law of Uninhibited Growth

- Find Equations of Populations That Obey the Law of Decay • Use Newton's Law of Cooling • Use Logistic Models
6.9 Building Exponential, Logarithmic, and Logistic Models from Data 489
Build an Exponential Model from Data • Build a Logarithmic Model from Data • Build a Logistic Model from Data
Chapter Review 497
Chapter Test 502
Cumulative Review 502
Chapter Projects 503
7 Trigonometric Functions 505
7.1 Angles and Their Measure 506
Convert between Decimal and Degree, Minute, Second Measures for Angles • Find the Length of an Arc of a Circle • Convert from Degrees to Radians and from Radians to Degrees • Find the Area of a Sector of a Circle • Find the Linear Speed of an Object Traveling in Circular Motion
7.2 Right Triangle Trigonometry 519
Find the Values of Trigonometric Functions of Acute Angles • Use Fundamental Identities • Find the Values of the Remaining Trigonometric Functions, Given the Value of One of Them • Use the Complementary Angle Theorem
7.3 Computing the Values of Trigonometric Functions of Acute Angles 531
Find the Exact Values of the Trigonometric Functions of $\frac{\pi}{4}=45^{\circ} \cdot$ Find the Exact Values of the Trigonometric Functions of $\frac{\pi}{6}=30^{\circ}$ and $\frac{\pi}{3}=60^{\circ}$
- Use a Calculator to Approximate the Values of the Trigonometric Functions of Acute Angles • Model and Solve Applied Problems Involving Right Triangles
7.4 Trigonometric Functions of Any Angle
Find the Exact Values of the Trigonometric Functions for Any Angle • Use Coterminal Angles to Find the Exact Value of a Trigonometric Function - Determine the Signs of the Trigonometric Functions of an Angle in a Given Quadrant • Find the Reference Angle of an Angle • Use a Reference Angle to Find the Exact Value of a Trigonometric Function • Find the Exact Values of the Trigonometric Functions of an Angle, Given Information about the Functions

7.5 Unit Circle Approach; Properties of the Trigonometric Functions

Find the Exact Values of the Trigonometric Functions Using the Unit Circle • Know the Domain and Range of the Trigonometric Functions • Use Periodic Properties to Find the Exact Values of the Trigonometric Functions - Use Even-Odd Properties to Find the Exact Values of the Trigonometric Functions
7.6 Graphs of the Sine and Cosine Functions

Graph Functions of the Form $y=A \sin (\omega x)$ Using Transformations • Graph
Functions of the Form $y=A \cos (\omega x)$ Using Transformations • Determine
the Amplitude and Period of Sinusoidal Functions • Graph Sinusoidal
Functions Using Key Points • Find an Equation for a Sinusoidal Graph
7.7 Graphs of the Tangent, Cotangent, Cosecant, and Secant Functions

Graph Functions of the Form $y=A \tan (\omega x)+B$ and $y=A \cot (\omega x)+B$

- Graph Functions of the Form $y=A \csc (\omega x)+B$ and $y=A \sec (\omega x)+B$
7.8 Phase Shift; Sinusoidal Curve Fitting 587
Graph Sinusoidal Functions of the Form $y=A \sin (\omega x-\phi)+B$
- Build Sinusoidal Models from Data

Chapter Review	$\mathbf{5 9 7}$
Chapter Test	$\mathbf{6 0 3}$
Cumulative Review	$\mathbf{6 0 3}$
Chapter Projects	$\mathbf{6 0 4}$

8.1 The Inverse Sine, Cosine, and Tangent Functions
Find the Exact Value of an Inverse Sine Function • Find an Approximate Value of an Inverse Sine Function - Use Properties of Inverse Functions to Find Exact Values of Certain Composite Functions • Find the Inverse Function of a Trigonometric Function • Solve Equations Involving Inverse Trigonometric Functions607
8.2 The Inverse Trigonometric Functions (Continued) 620
Find the Exact Value of Expressions Involving the Inverse Sine, Cosine, and Tangent Functions • Define the Inverse Secant, Cosecant, and Cotangent Functions • Use a Calculator to Evaluate $\sec ^{-1} x, \csc ^{-1} x$, and $\cot ^{-1} x \bullet$ Write a Trigonometric Expression as an Algebraic Expression
8.3 Trigonometric Equations 625
Solve Equations Involving a Single Trigonometric Function • Solve Trigonometric Equations Using a Calculator • Solve Trigonometric Equations Quadratic in Form • Solve Trigonometric Equations Using Fundamental Identities • Solve Trigonometric Equations Using a Graphing Utility
8.4 Trigonometric Identities 635
Use Algebra to Simplify Trigonometric Expressions • Establish Identities
8.5 Sum and Difference Formulas 643
Use Sum and Difference Formulas to Find Exact Values • Use Sum and Difference Formulas to Establish Identities • Use Sum and Difference Formulas Involving Inverse Trigonometric Functions • Solve Trigonometric Equations Linear in Sine and Cosine
8.6 Double-angle and Half-angle Formulas 655
Use Double-angle Formulas to Find Exact Values • Use Double-angle Formulas to Establish Identities • Use Half-angle Formulas to Find Exact Values
8.7 Product-to-Sum and Sum-to-Product Formulas 665
Express Products as Sums • Express Sums as Products
Chapter Review 669
Chapter Test 672
Cumulative Review 673
Chapter Projects 674
9 Applications of Trigonometric Functions 675
9.1 Applications Involving Right Triangles 676
Solve Right Triangles • Solve Applied Problems
9.2 The Law of Sines 682
Solve SAA or ASA Triangles • Solve SSA Triangles • Solve Applied Problems
9.3 The Law of Cosines 692
Solve SAS Triangles • Solve SSS Triangles • Solve Applied Problems
9.4 Area of a Triangle 699
Find the Area of SAS Triangles • Find the Area of SSS Triangles
9.5 Simple Harmonic Motion; Damped Motion; Combining Waves 705
Build a Model for an Object in Simple Harmonic Motion • Analyze Simple Harmonic Motion • Analyze an Object in Damped Motion - Graph the Sum of Two Functions
Chapter Review 714
Chapter Test 716
Cumulative Review 717
Chapter Projects 718
10 Polar Coordinates; Vectors 719
10.1 Polar Coordinates 720
Plot Points Using Polar Coordinates • Convert from Polar Coordinates to Rectangular Coordinates - Convert from Rectangular Coordinates to Polar Coordinates • Transform Equations between Polar and Rectangular Forms
10.2 Polar Equations and Graphs 729
Identify and Graph Polar Equations by Converting to Rectangular Equations • Test Polar Equations for Symmetry • Graph Polar Equations by Plotting Points
10.3 The Complex Plane; De Moivre's Theorem 744
Plot Points in the Complex Plane - Convert a Complex Number between Rectangular Form and Polar Form • Find Products and Quotients of Complex Numbers in Polar Form • Use De Moivre's Theorem • Find Complex Roots
10.4 Vectors 752
Graph Vectors • Find a Position Vector • Add and Subtract Vectors Algebraically •Find a Scalar Multiple and the Magnitude of a Vector - Find a Unit Vector • Find a Vector from Its Direction and Magnitude - Model with Vectors
10.5 The Dot Product 766
Find the Dot Product of Two Vectors • Find the Angle between Two Vectors - Determine Whether Two Vectors Are Parallel • Determine Whether Two Vectors Are Orthogonal • Decompose a Vector into Two Orthogonal Vectors - Compute Work

Chapter Review	$\mathbf{7 7 3}$
Chapter Test	$\mathbf{7 7 6}$
Cumulative Review	$\mathbf{7 7 6}$
Chapter Projects	$\mathbf{7 7 7}$

11 Analytic Geometry 778
11.1 Conics 779Know the Names of the Conics
11.2 The Parabola 780
Analyze Parabolas with Vertex at the Origin • Analyze Parabolas with Vertex at $(h, k) \bullet$ Solve Applied Problems Involving Parabolas
11.3 The Ellipse 789
Analyze Ellipses with Center at the Origin • Analyze Ellipses with Center at (h, k) • Solve Applied Problems Involving Ellipses
11.4 The Hyperbola 799
Analyze Hyperbolas with Center at the Origin • Find the Asymptotes of a Hyperbola • Analyze Hyperbolas with Center at $(h, k) \bullet$ Solve Applied Problems Involving Hyperbolas
11.5 Rotation of Axes; General Form of a Conic 812
Identify a Conic • Use a Rotation of Axes to Transform Equations

- Analyze an Equation Using a Rotation of Axes • Identify Conics without a Rotation of Axes
11.6 Polar Equations of Conics 820
Analyze and Graph Polar Equations of Conics • Convert the Polar Equation of a Conic to a Rectangular Equation
11.7 Plane Curves and Parametric Equations 826
Graph Parametric Equations • Find a Rectangular Equation for a Curve Defined Parametrically • Use Time as a Parameter in Parametric Equations • Find Parametric Equations for Curves Defined by Rectangular Equations

Chapter Review	$\mathbf{8 3 8}$
Chapter Test	$\mathbf{8 4 1}$
Cumulative Review	$\mathbf{8 4 1}$
Chapter Projects	$\mathbf{8 4 2}$

12 Systems of Equations and Inequalities 843
12.1 Systems of Linear Equations: Substitution and Elimination 844
Solve Systems of Equations by Substitution • Solve Systems of Equations by Elimination • Identify Inconsistent Systems of Equations Containing

Two Variables • Express the Solution of a System of Dependent Equations Containing Two Variables • Solve Systems of Three Equations Containing Three Variables • Identify Inconsistent Systems of Equations Containing Three Variables • Express the Solution of a System of Dependent Equations Containing Three Variables
12.2 Systems of Linear Equations: Matrices

Write the Augmented Matrix of a System of Linear Equations • Write the
System of Equations from the Augmented Matrix • Perform Row Operations
on a Matrix • Solve a System of Linear Equations Using Matrices
12.3 Systems of Linear Equations: Determinants
Evaluate 2 by 2 Determinants • Use Cramer's Rule to Solve a System of Two Equations Containing Two Variables • Evaluate 3 by 3 Determinants - Use Cramer's Rule to Solve a System of Three Equations Containing Three Variables • Know Properties of Determinants
12.4 Matrix Algebra 884
Find the Sum and Difference of Two Matrices • Find Scalar Multiples of a Matrix • Find the Product of Two Matrices • Find the Inverse of a Matrix Solve a System of Linear Equations Using an Inverse Matrix
12.5 Partial Fraction Decomposition 901
Decompose $\frac{P}{Q_{P}}$, Where Q Has Only Nonrepeated Linear Factors- Decompose $\frac{P}{Q}$, Where Q Has Repeated Linear Factors \bullet Decompose $\frac{P}{Q}$,Where Q Has a Nonrepeated Irreducible Quadratic Factor \bullet Decompose $\frac{P}{Q}$,
Where Q Has a Repeated Irreducible Quadratic Factor
12.6 Systems of Nonlinear Equations 909
Solve a System of Nonlinear Equations Using Substitution • Solve a System of Nonlinear Equations Using Elimination
12.7 Systems of Inequalities 918
Graph an Inequality • Graph a System of Inequalities
12.8 Linear Programming 925
Set Up a Linear Programming Problem • Solve a Linear Programming Problem

Chapter Review	932
Chapter Test	$\mathbf{9 3 6}$
Cumulative Review	$\mathbf{9 3 7}$
Chapter Projects	$\mathbf{9 3 7}$

13.1 Sequences 940
Write the First Several Terms of a Sequence • Write the Terms of a Sequence Defined by a Recursive Formula • Use Summation Notation - Find the Sum of a Sequence
13.2 Arithmetic Sequences 950
Determine Whether a Sequence Is Arithmetic • Find a Formula for an Arithmetic Sequence \bullet Find the Sum of an Arithmetic Sequence
13.3 Geometric Sequences; Geometric Series 956
Determine Whether a Sequence Is Geometric • Find a Formula for a Geometric Sequence • Find the Sum of a Geometric Sequence

- Determine Whether a Geometric Series Converges or Diverges • Solve Annuity Problems
13.4 Mathematical Induction 967
Prove Statements Using Mathematical Induction
13.5 The Binomial Theorem 971Evaluate $\binom{n}{j}$ • Use the Binomial Theorem
Chapter Review 977
Chapter Test 979
Cumulative Review 980
Chapter Projects 981
14 Counting and Probability 982
14.1 Counting 983
Find All the Subsets of a Set • Count the Number of Elements in a Set - Solve Counting Problems Using the Multiplication Principle
14.2 Permutations and Combinations 988
Solve Counting Problems Using Permutations Involving n Distinct Objects • Solve Counting Problems Using Combinations • Solve Counting Problems Using Permutations Involving n Nondistinct Objects
14.3 Probability 997
Construct Probability Models • Compute Probabilities of Equally Likely Outcomes • Find Probabilities of the Union of Two Events • Use the Complement Rule to Find Probabilities

Chapter Review	$\mathbf{1 0 0 7}$
Chapter Test	$\mathbf{1 0 0 9}$
Cumulative Review	$\mathbf{1 0 1 0}$
Chapter Projects	$\mathbf{1 0 1 0}$

Appendix Graphing Utilities A1
A. 1 The Viewing Rectangle A1
A. 2 Using a Graphing Utility to Graph Equations A3
A. 3 Using a Graphing Utility to Locate Intercepts and Check for Symmetry A5
A. 4 Using a Graphing Utility to Solve Equations A6
A. 5 Square Screens A8
A. 6 Using a Graphing Utility to Graph Inequalities A9
A. 7 Using a Graphing Utility to Solve Systems of Linear Equations A9
A. 8 Using a Graphing Utility to Graph a Polar Equation A11
A. 9 Using a Graphing Utility to Graph Parametric Equations A11
Answers AN1
Credits C1
Index I1

For the family

Katy (Murphy) and Pat
Shannon, Patrick, Ryan
Mike and Yola
Dan and Sheila
Colleen (O'Hara) and Bill
Maeve, Sean, Nolan
Kaleigh, Billy, Timmy

Three Distinct Series

Students have different goals, learning styles, and levels of preparation. Instructors have different teaching philosophies, styles, and techniques. Rather than write one series to fit all, the Sullivans have written three distinct series. All share the same goal - to develop a high level of mathematical understanding and an appreciation for the way mathematics can describe the world around us. The manner of reaching that goal, however, differs from series to series.

Contemporary Series, Tenth Edition

The Contemporary Series is the most traditional in approach yet modern in its treatment of precalculus mathematics. Graphing utility coverage is optional and can be included or excluded at the discretion of the instructor: College Algebra, Algebra \& Trigonometry, Trigonometry: A Unit Circle Approach, Precalculus.

Enhanced with Graphing Utilities Series, Sixth Edition

This series provides a thorough integration of graphing utilities into topics, allowing students to explore mathematical concepts and encounter ideas usually studied in later courses. Using technology, the approach to solving certain problems differs from the Contemporary Series, while the emphasis on understanding concepts and building strong skills does not: College Algebra, Algebra \& Trigonometry, Precalculus.

Concepts through Functions Series, Third Edition

This series differs from the others, utilizing a functions approach that serves as the organizing principle tying concepts together. Functions are introduced early in various formats. This approach supports the Rule of Four, which states that functions are represented symbolically, numerically, graphically, and verbally. Each chapter introduces a new type of function and then develops all concepts pertaining to that particular function. The solutions of equations and inequalities, instead of being developed as stand-alone topics, are developed in the context of the underlying functions. Graphing utility coverage is optional and can be included or excluded at the discretion of the instructor: College Algebra; Precalculus, with a Unit Circle Approach to Trigonometry; Precalculus, with a Right Triangle Approach to Trigonometry.

The Contemporary Series

College Algebra, Tenth Edition

This text provides a contemporary approach to college algebra, with three chapters of review material preceding the chapters on functions. Graphing calculator usage is provided, but is optional. After completing this book, a student will be adequately prepared for trigonometry, finite mathematics, and business calculus.

Algebra \& Trigonometry, Tenth Edition

This text contains all the material in College Algebra, but also develops the trigonometric functions using a right triangle approach and showing how it relates to the unit circle approach. Graphing techniques are emphasized, including a thorough discussion of polar coordinates, parametric equations, and conics using polar coordinates. Graphing calculator usage is provided, but is optional. After completing this book, a student will be adequately prepared for finite mathematics, business calculus, and engineering calculus.

Precalculus, Tenth Edition

This text contains one review chapter before covering the traditional precalculus topic of functions and their graphs, polynomial and rational functions, and exponential and logarithmic functions. The trigonometric functions are introduced using a unit circle approach and showing how it relates to the right triangle approach. Graphing techniques are emphasized, including a thorough discussion of polar coordinates, parametric equations, and conics using polar coordinates. Graphing calculator usage is provided, but is optional. The final chapter provides an introduction to calculus, with a discussion of the limit, the derivative, and the integral of a function. After completing this book, a student will be adequately prepared for finite mathematics, business calculus, and engineering calculus.

Trigonometry: a Unit Circle Approach, Tenth Edition

This text, designed for stand-alone courses in trigonometry, develops the trigonometric functions using a unit circle approach and showing how it relates to the right triangle approach. Graphing techniques are emphasized, including a thorough discussion of polar coordinates, parametric equations, and conics using polar coordinates. Graphing calculator usage is provided, but is optional. After completing this book, a student will be adequately prepared for finite mathematics, business calculus, and engineering calculus.

Preface to the Instructor

As a professor of mathematics at an urban public university for 35 years, I understand the varied needs of algebra and trigonometry students. Students range from being underprepared, with little mathematical background and a fear of mathematics, to being highly prepared and motivated. For some, this is their final course in mathematics. For others, it is preparation for future mathematics courses. I have written this text with both groups in mind.

A tremendous benefit of authoring a successful series is the broad-based feedback I receive from teachers and students who have used previous editions. I am sincerely grateful for their support. Virtually every change to this edition is the result of their thoughtful comments and suggestions. I hope that I have been able to take their ideas and, building upon a successful foundation of the ninth edition, make this series an even better learning and teaching tool for students and teachers.

Features in the Tenth Edition

A descriptive list of the many special features of Algebra \& Trigonometry can be found on the endpapers in the front of this text.

This list places the features in their proper context, as building blocks of an overall learning system that has been carefully crafted over the years to help students get the most out of the time they put into studying. Please take the time to review this and to discuss it with your students at the beginning of your course. My experience has been that when students utilize these features, they are more successful in the course.

New to the Tenth Edition

- Retain Your Knowledge This new category of problems in the exercise set are based on the article "To Retain New Learning, Do the Math" published in the Edurati Review. In this article, Kevin Washburn suggests that "the more students are required to recall new content or skills, the better their memory will be." It is frustrating when students cannot recall skills learned earlier in the course. To alleviate this recall problem, we have created "Retain Your Knowledge" problems. These are problems considered to be "final exam material" that students can use to maintain their skills. All the answers to these problems appear in the back of the text, and all are programmed in MyMathLab.
- Guided Lecture Notes Ideal for online, emporium/ redesign courses, inverted classrooms, or traditional lecture classrooms. These lecture notes help students take thorough, organized, and understandable notes as they watch the Author in Action videos. They ask students to complete definitions, procedures, and examples based on the content of the videos and text. In addition, experience suggests that students learn by doing and understanding the why/how of the concept or
property.Therefore, many sections will have an exploration activity to motivate student learning. These explorations introduce the topic and/or connect it to either a real-world application or a previous section. For example, when the vertical-line test is discussed in Section 3.2, after the theorem statement, the notes ask the students to explain why the vertical-line test works by using the definition of a function. This challenge helps students process the information at a higher level of understanding.
- Illustrations Many of the figures now have captions to help connect the illustrations to the explanations in the body of the text.
- TI Screen Shots In this edition we have replaced all the screen shots from the ninth edition with screen shots using TI-84Plus C. These updated screen shots help students visualize concepts clearly and help make stronger connections between equations, data, and graphs in full color.
- Chapter Projects, which apply the concepts of each chapter to a real-world situation, have been enhanced to give students an up-to-the-minute experience. Many projects are new and Internet-based, requiring the student to research information online in order to solve problems.
- Exercise Sets All the exercises in the text have been reviewed and analyzed for this edition, some have been removed, and new ones have been added. All time-sensitive problems have been updated to the most recent information available. The problem sets remain classified according to purpose.

The 'Are You Prepared?' problems have been improved to better serve their purpose as a just-in-time review of concepts that the student will need to apply in the upcoming section.

The Concepts and Vocabulary problems have been expanded and now include multiple-choice exercises. Together with the fill-in-the-blank and True/False problems, these exercises have been written to serve as reading quizzes.

Skill Building problems develop the student's computational skills with a large selection of exercises that are directly related to the objectives of the section. Mixed Practice problems offer a comprehensive assessment of skills that relate to more than one objective. Often these require skills learned earlier in the course.

Applications and Extensions problems have been updated. Further, many new application-type exercises have been added, especially ones involving information and data drawn from sources the student will recognize, to improve relevance and timeliness.

The Explaining Concepts: Discussion and Writing exercises have been improved and expanded to provide more opportunity for classroom discussion and group projects.

New to this edition, Retain Your Knowledge exercises consist of a collection of four problems in each exercise set that are based on material learned earlier in the course. They serve to keep information that has already been learned "fresh" in the mind of the student. Answers to all these problems appear in the Student Edition.

The Review Exercises in the Chapter Review have been streamlined, but they remain tied to the clearly expressed objectives of the chapter. Answers to all these problems appear in the Student Edition.

- Annotated Instructor's Edition As a guide, the author's suggestions for homework assignments are indicated by a blue underscore below the problem number. These problems are assignable in the MyMathLab as part of a "Ready-to-Go" course.

Content Changes in the Tenth Edition

- Section 3.1 The objective Find the Difference Quotient of a Function has been added.
- Section 5.1 The subsection Behavior of the Graph of a Polynomial Function Near a Zero has been removed.
- Section 5.3 A subsection has been added that discusses the role of multiplicity of the zeros of the denominator of a rational function as it relates to the graph near a vertical asymptote.
- Section 5.5 The objective Use Descartes' Rule of Signs has been included.
- Section 5.5 The theorem Bounds on the Zeros of a Polynomial Function is now based on the traditional method of using synthetic division.

Using the Tenth Edition Effectively with Your Syllabus

To meet the varied needs of diverse syllabi, this text contains more content than is likely to be covered in an Algebra \& Trigonometry course. As the chart illustrates, this text has been organized with flexibility of use in mind. Within a given chapter, certain sections are optional (see the details that follow the figure below) and can be omitted without loss of continuity.

Chapter R Review

This chapter consists of review material. It may be used as the first part of the course or later as a just-in-time review when the content is required. Specific references to this chapter occur throughout the text to assist in the review process.

Chapter 1 Equations and Inequalities

Primarily a review of Intermediate Algebra topics, this material is a prerequisite for later topics. The coverage of complex numbers and quadratic equations with a negative discriminant is optional and may be postponed or skipped entirely without loss of continuity.

Chapter 2 Graphs

This chapter lays the foundation for functions. Section 2.5 is optional.

Chapter 3 Functions and Their Graphs

Perhaps the most important chapter. Section 3.6 is optional.

Chapter 4 Linear and Quadratic Functions

Topic selection depends on your syllabus. Sections 4.2 and 4.4 may be omitted without loss of continuity.

Chapter 5 Polynomial and Rational Functions

 Topic selection depends on your syllabus.Chapter 6 Exponential and Logarithmic Functions Sections 6.1-6.6 follow in sequence. Sections 6.7, 6.8, and 6.9 are optional.

Chapter 7 Trigonometric Functions

Section 7.8 may be omitted in a brief course.

Chapter 8 Analytic Trigonometry

Sections 8.2, 8.6, and 8.8 may be omitted in a brief course.
Chapter 9 Applications of Trigonometric Functions Sections 9.4 and 9.5 may be omitted in a brief course.

Chapter 10 Polar Coordinates; Vectors

Sections 10.1-10.3 and Sections 10.4-10.5 are independent and may be covered separately.

Chapter 11 Analytic Geometry

Sections 11.1-11.4 follow in sequence. Sections 11.5, 11.6, and 11.7 are independent of each other, but each requires Sections 11.1-11.4.

Chapter 12 Systems of Equations and Inequalities Sections 12.2-12.7 may be covered in any order, but each requires Section 12.1. Section 12.8 requires Section 12.7.
Chapter 13 Sequences; Induction; The Binomial Theorem
There are three independent parts: Sections 13.1-13.3; Section 13.4; and Section 13.5.

Chapter 14 Counting and Probability The sections follow in sequence.

Acknowledgments

Textbooks are written by authors, but evolve from an idea to final form through the efforts of many people. It was Don Dellen who first suggested this text and series to me. Don is remembered for his extensive contributions to publishing and mathematics.

Thanks are due to the following people for their assistance and encouragement to the preparation of this edition:

- From Pearson Education: Anne Kelly for her substantial contributions, ideas, and enthusiasm; Dawn Murrin, for her unmatched talent at getting the details right; Joseph Colella for always getting the reviews and pages to me on time; Peggy McMahon for directing the always difficult production process; Rose Kernan for handling
liaison between the compositor and author; Peggy Lucas for her genuine interest in marketing this text; Chris Hoag for her continued support and genuine interest; Greg Tobin for his leadership and commitment to excellence; and the Pearson Math and Science Sales team, for their continued confidence and personal support of our texts.
- Accuracy checkers: C. Brad Davis, who read the entire manuscript and accuracy checked answers. His attention to detail is amazing; Timothy Britt, for creating the Solutions Manuals and accuracy checking answers.
Finally, I offer my grateful thanks to the dedicated users and reviewers of my texts, whose collective insights form the backbone of each textbook revision.

James Africh, College of DuPage

Steve Agronsky, Cal Poly State University
Gererdo Aladro, Florida International University
Grant Alexander, Joliet Junior College
Dave Anderson, South Suburban College
Richard Andrews, Florida A\&M University
Joby Milo Anthony, University of Central Florida
James E. Arnold, University of Wisconsin-Milwaukee
Adel Arshaghi, Center for Educational Merit Carolyn Autray, University of West Georgia Agnes Azzolino, Middlesex County College
Wilson P. Banks, Illinois State University Sudeshna Basu, Howard University
Dale R. Bedgood, East Texas State University
Beth Beno, South Suburban College
Carolyn Bernath, Tallahassee Community College
Rebecca Berthiaume, Edison State College
William H. Beyer, University of Akron
Annette Blackwelder, Florida State University
Richelle Blair, Lakeland Community College
Kevin Bodden, Lewis and Clark College
Jeffrey Boerner, University of Wisconsin-Stout
Barry Booten, Florida Atlantic University
Larry Bouldin, Roane State Community College
Bob Bradshaw, Ohlone College
Trudy Bratten, Grossmont College
Tim Bremer, Broome Community College
Tim Britt, Jackson State Community College
Michael Brook, University of Delaware
Joanne Brunner, Joliet Junior College
Warren Burch, Brevard Community College
Mary Butler, Lincoln Public Schools
Melanie Butler, West Virginia University
Jim Butterbach, Joliet Junior College
William J. Cable, University of Wisconsin-Stevens Point
Lois Calamia, Brookdale Community College
Jim Campbell, Lincoln Public Schools
Roger Carlsen, Moraine Valley Community College
Elena Catoiu, Joliet Junior College Mathews Chakkanakuzhi, Palomar College Tim Chappell, Penn Valley Community College John Collado, South Suburban College Alicia Collins, Mesa Community College Nelson Collins, Joliet Junior College Rebecca Connell, Troy University
Jim Cooper, Joliet Junior College
Denise Corbett, East Carolina University

Carlos C. Corona, San Antonio College
Theodore C. Coskey, South Seattle Community College
Rebecca Connell, Troy University
Donna Costello, Plano Senior High School
Paul Crittenden, University of Nebraska at Lincoln
John Davenport, East Texas State University
Faye Dang, Joliet Junior College
Antonio David, Del Mar College
Stephanie Deacon, Liberty University
Duane E. Deal, Ball State University
Jerry DeGroot, Purdue North Central
Timothy Deis, University of WisconsinPlatteville
Joanna DelMonaco, Middlesex Community College
Vivian Dennis, Eastfield College
Deborah Dillon, R. L. Turner High School
Guesna Dohrman, Tallahassee Community College
Cheryl Doolittle, Iowa State University
Karen R. Dougan, University of Florida
Jerrett Dumouchel, Florida Community College at Jacksonville
Louise Dyson, Clark College
Paul D. East, Lexington Community College
Don Edmondson, University of Texas-Austin
Erica Egizio, Joliet Junior College
Jason Eltrevoog, Joliet Junior College
Christopher Ennis, University of Minnesota
Kathy Eppler, Salt Lake Community College
Ralph Esparza, Jr., Richland College
Garret J. Etgen, University of Houston
Scott Fallstrom, Shoreline Community College
Pete Falzone, Pensacola Junior College
Arash Farahmand, Skyline College
W.A. Ferguson, University of Illinois-Urbana/ Champaign
Iris B. Fetta, Clemson University
Mason Flake, student at Edison Community College
Timothy W. Flood, Pittsburg State University
Robert Frank, Westmoreland County
Community College
Merle Friel, Humboldt State University
Richard A. Fritz, Moraine Valley
Community College
Dewey Furness, Ricks College
Mary Jule Gabiou, North Idaho College
Randy Gallaher, Lewis and Clark College
Tina Garn, University of Arizona
Dawit Getachew, Chicago State University
Wayne Gibson, Rancho Santiago College

Loran W. Gierhart, University of Texas at San Antonio and Palo Alto College
Robert Gill, University of Minnesota Duluth
Nina Girard, University of Pittsburgh at Johnstown
Sudhir Kumar Goel, Valdosta State University
Adrienne Goldstein, Miami Dade College, Kendall Campus
Joan Goliday, Sante Fe Community College
Lourdes Gonzalez, Miami Dade College, Kendall Campus
Frederic Gooding, Goucher College
Donald Goral, Northern Virginia Community College
Sue Graupner, Lincoln Public Schools
Mary Beth Grayson, Liberty University
Jennifer L. Grimsley, University of Charleston
Ken Gurganus, University of North Carolina
James E. Hall, University of Wisconsin-Madison
Judy Hall, West Virginia University
Edward R. Hancock, DeVry Institute of Technology
Julia Hassett, DeVry Institute, Dupage
Christopher Hay-Jahans, University of South Dakota
Michah Heibel, Lincoln Public Schools
LaRae Helliwell, San Jose City College
Celeste Hernandez, Richland College
Gloria P. Hernandez, Louisiana State University at Eunice
Brother Herron, Brother Rice High School
Robert Hoburg, Western Connecticut State University
Lynda Hollingsworth, Northwest Missouri State University
Deltrye Holt, Augusta State University
Charla Holzbog, Denison High School
Lee Hruby, Naperville North High School
Miles Hubbard, St. Cloud State University
Kim Hughes, California State College-San Bernardino
Stanislav, Jabuka, University of Nevada, Reno
Ron Jamison, Brigham Young University
Richard A. Jensen, Manatee Community College
Glenn Johnson, Middlesex Community College
Sandra G. Johnson, St. Cloud State University
Tuesday Johnson, New Mexico State University
Susitha Karunaratne, Purdue University North Central
Moana H. Karsteter, Tallahassee Community College
Donna Katula, Joliet Junior College

Arthur Kaufman, College of Staten Island Thomas Kearns, North Kentucky University Jack Keating, Massasoit Community College Shelia Kellenbarger, Lincoln Public Schools Rachael Kenney, North Carolina State University
John B. Klassen, North Idaho College Debra Kopcso, Louisiana State University Lynne Kowski, Raritan Valley Community College
Yelena Kravchuk, University of Alabama at Birmingham
Ray S. Kuan, Skyline College
Keith Kuchar, Manatee Community College
Tor Kwembe, Chicago State University Linda J. Kyle, Tarrant Country Jr. College H.E. Lacey, Texas A \& M University Harriet Lamm, Coastal Bend College James Lapp, Fort Lewis College
Matt Larson, Lincoln Public Schools Christopher Lattin, Oakton Community College Julia Ledet, Lousiana State University Adele LeGere, Oakton Community College Kevin Leith, University of Houston JoAnn Lewin, Edison College
Jeff Lewis, Johnson County Community College
Janice C. Lyon, Tallahassee Community College
Jean McArthur, Joliet Junior College
Virginia McCarthy, Iowa State University
Karla McCavit, Albion College
Michael McClendon, University of Central Oklahoma
Tom McCollow, DeVry Institute of Technology
Marilyn McCollum, North Carolina State University
Jill McGowan, Howard University
Will McGowant, Howard University
Angela McNulty, Joliet Junior College
Laurence Maher, North Texas State University
Jay A. Malmstrom, Oklahoma City Community College
Rebecca Mann, Apollo High School
Lynn Marecek, Santa Ana College
Sherry Martina, Naperville North High School
Alec Matheson, Lamar University
Nancy Matthews, University of Oklahoma
James Maxwell, Oklahoma State University-Stillwater
Marsha May, Midwestern State University
James McLaughlin, West Chester University
Judy Meckley, Joliet Junior College
David Meel, Bowling Green State University
Carolyn Meitler, Concordia University
Samia Metwali, Erie Community College
Rich Meyers, Joliet Junior College
Eldon Miller, University of Mississippi
James Miller, West Virginia University
Michael Miller, Iowa State University
Kathleen Miranda, SUNY at Old Westbury
Chris Mirbaha, The Community College of Baltimore County
Val Mohanakumar, Hillsborough Community College
Thomas Monaghan, Naperville North High School
Miguel Montanez, Miami Dade College, Wolfson Campus
Maria Montoya, Our Lady of the Lake University
Susan Moosai, Florida Atlantic University

Craig Morse, Naperville North High School
Samad Mortabit, Metropolitan State University
Pat Mower, Washburn University
Tammy Muhs, University of Central Florida
A. Muhundan, Manatee Community College

Jane Murphy, Middlesex Community College
Richard Nadel, Florida International University Gabriel Nagy, Kansas State University
Bill Naegele, South Suburban College
Karla Neal, Lousiana State University
Lawrence E. Newman, Holyoke Community College
Dwight Newsome, Pasco-Hernando Community College
Denise Nunley, Maricopa Community Colleges
James Nymann, University of Texas-El Paso
Mark Omodt, Anoka-Ramsey Community College
Seth F. Oppenheimer, Mississippi State University
Leticia Oropesa, University of Miami
Linda Padilla, Joliet Junior College
Sanja Pantic, University of Illinois at Chicago
E. James Peake, Iowa State University

Kelly Pearson, Murray State University
Dashamir Petrela, Florida Atlantic University
Philip Pina, Florida Atlantic University
Charlotte Pisors, Baylor University
Michael Prophet, University of Northern Iowa
Laura Pyzdrowski, West Virginia University
Carrie Quesnell, Weber State University
Neal C. Raber, University of Akron
Thomas Radin, San Joaquin Delta College
Aibeng Serene Radulovic, Florida Atlantic University
Ken A. Rager, Metropolitan State College
Kenneth D. Reeves, San Antonio College
Elsi Reinhardt, Truckee Meadows Community College
Jose Remesar, Miami Dade College, Wolfson Campus
Jane Ringwald, Iowa State University
Douglas F. Robertson, University of Minnesota, MPLS
Stephen Rodi, Austin Community College
William Rogge, Lincoln Northeast High School
Howard L. Rolf, Baylor University
Mike Rosenthal, Florida International
University
Phoebe Rouse, Lousiana State University
Edward Rozema, University of Tennessee at Chattanooga
Dennis C. Runde, Manatee Community College
Alan Saleski, Loyola University of Chicago
Susan Sandmeyer, Jamestown Community College
Brenda Santistevan, Salt Lake Community College
Linda Schmidt, Greenville Technical College
Ingrid Scott, Montgomery College
A.K. Shamma, University of West Florida

Zachery Sharon, University of Texas at San Antonio
Martin Sherry, Lower Columbia College
Carmen Shershin, Florida International University
Tatrana Shubin, San Jose State University
Anita Sikes, Delgado Community College
Timothy Sipka, Alma College

Charlotte Smedberg, University of Tampa
Lori Smellegar, Manatee Community College
Gayle Smith, Loyola Blakefield
Cindy Soderstrom, Salt Lake Community College
Leslie Soltis, Mercyhurst College
John Spellman, Southwest Texas State University
Karen Spike, University of North Carolina
Rajalakshmi Sriram, Okaloosa-Walton Community College
Katrina Staley, North Carolina Agricultural and Technical State University
Becky Stamper, Western Kentucky University
Judy Staver, Florida Community College-South
Robin Steinberg, Pima Community College
Neil Stephens, Hinsdale South High School
Sonya Stephens, Florida A\&M Univeristy
Patrick Stevens, Joliet Junior College
John Sumner, University of Tampa
Matthew TenHuisen, University of North Carolina, Wilmington
Christopher Terry, Augusta State University
Diane Tesar, South Suburban College
Tommy Thompson, Brookhaven College
Martha K. Tietze, Shawnee Mission Northwest High School
Richard J. Tondra, Iowa State University
Florentina Tone, University of West Florida
Suzanne Topp, Salt Lake Community College
Marilyn Toscano, University of Wisconsin, Superior
Marvel Townsend, University of Florida
Jim Trudnowski, Carroll College
Robert Tuskey, Joliet Junior College
Mihaela Vajiac, Chapman University-Orange
Julia Varbalow, Thomas Nelson Community College-Leesville
Richard G. Vinson, University of South Alabama
Jorge Viola-Prioli, Florida Atlantic University
Mary Voxman, University of Idaho
Jennifer Walsh, Daytona Beach Community College
Donna Wandke, Naperville North High School
Timothy L.Warkentin, Cloud County Community College
Melissa J. Watts, Virginia State University
Hayat Weiss, Middlesex Community College
Kathryn Wetzel, Amarillo College
Darlene Whitkenack, Northern Illinois University
Suzanne Williams, Central Piedmont Community College
Larissa Williamson, University of Florida
Christine Wilson, West Virginia University
Brad Wind, Florida International University
Anna Wiodarczyk, Florida International University
Mary Wolyniak, Broome Community College
Canton Woods, Auburn University
Tamara S. Worner, Wayne State College
Terri Wright, New Hampshire Community Technical College, Manchester
Aletheia Zambesi, University of West Florida
George Zazi, Chicago State University
Steve Zuro, Joliet Junior College

Resources for Success

MyMathLab*Online Course (access code required)

MyMathLab delivers proven results in helping individual students succeed. It provides engaging experiences that personalize, stimulate, and measure learning for each student. And it comes from an experienced partner with educational expertise and an eye on the future. MyMathLab helps prepare students and gets them thinking more conceptually and visually through the following features:

Video Assessment

Video assessment is tied to key Author in Action videos to check students' conceptual understanding of important math concepts.

Enhanced Graphing Functionality o

New functionality within the graphing utility allows graphing of 3-point quadratic functions, 4-point cubic graphs, and transformations in exercises.

Skills for Success Modules are integrated within the MyMathLab course to help students succeed in collegiate courses and prepare for future professions.

Retain Your Knowledge These new exercises support ongoing review at the course
 level and help students maintain essential skills.

Instructor Resources

Additional resources can be downloaded from www.pearsonhighered.com or hardcopy resources can be ordered from your sales representative.

Ready to Go MyMathLab ${ }^{\circledR}$ Course

Now it is even easier to get started with MyMathLab. The Ready to Go MyMathLab course option includes author-chosen preassigned homework, integrated review, and more.

TestGen ${ }^{\text {® }}$

TestGen ${ }^{\circledR}$ (www.pearsoned.com/testgen) enables instructors to build, edit, print, and administer tests using a computerized bank of questions developed to cover all the objectives of the text.

PowerPoint ${ }^{\circledR}$ Lecture Slides

Fully editable slides correlated with the text.

Annotated Instructor's Edition

Shorter answers are on the page beside the exercises. Longer answers are in the back of the text.

Instructor Solutions Manual

Includes fully worked solutions to all exercises in the text.

Mini Lecture Notes

Includes additional examples and helpful teaching tips, by section.

Online Chapter Projects

Additional projects that give students an opportunity to apply what they learned in the chapter.

Student Resources

Additional resources to enhance student success:

Lecture Video

Author in Action videos are actual classroom lectures with fully worked out examples presented by Michael Sullivan, III. All video is assignable within MyMathlab.

Chapter Test Prep Videos

Students can watch instructors work through step-by-step solutions to all chapter test exercises from the text. These are available in MyMathlab and on YouTube.

Student Solutions Manual

Provides detailed worked-out solutions to oddnumbered exercises.

Guided Lecture Notes

These lecture notes assist students in taking thorough, organized, and understandable notes while watching Author in Action videos. Students actively participate in learning the how/why of important concepts through explorations and activities. The Guided Lecture Notes are available as PDF's and customizable Word files in MyMathLab. They can also be packaged with the text and the MyMathLab access code.

Algebra Review

Four chapters of Intermediate Algebra review. Perfect for a slower-paced course or for individual review.

Applications Index

Acoustics

amplifying sound, 500
loudness of sound, 451
loudspeaker, 712
tuning fork, 712, 713
whispering galleries, 795-796

Aerodynamics

modeling aircraft motion, 777

Aeronautics

Challenger disaster, 488

Agriculture

farm management, 931
farm workers in U.S., 487
field enclosure, 916
grazing area for cow, 704
milk production, 494
minimizing cost, 931
removing stump, 765
watering a field, 102
Air travel
bearing of aircraft, 680
distance between two planes, 262
flight time and ticket price, 289
frequent flyer miles, 689
holding pattern, 633
parking at O'Hare International Airport, 245
revising a flight plan, 697
speed and direction of aircraft, 759, 763

Archaeology

age of ancient tools, 480-481
age of fossil, 486
age of tree, 486
date of prehistoric man's death, 500

Architecture

brick staircase, 955,979
Burj Khalifa building, 31
Flatiron Building, 703
floor design, 953-954, 979
football stadium seating, 955
mosaic design, 955,979
Norman window, 37, 309
One World Trade Center, 541
parabolic arch, 309
racetrack design, 798
special window, 309, 317
stadium construction, 955
window design, 309
window dimensions, 102

Area. See also Geometry
of Bermuda Triangle, 703
under a curve, 619
of isosceles triangle, 664
of portion of rectangle outside of circle, 518
of sector of circle, 513, 516
of segment of circle, 715
of sidewalk, 531
for tethered dog to roam, 518
of windshield wiper sweep, 516

Art

fine decorative pieces, 541
framing a painting, 146

Astronomy

angle of elevation of Sun, 679
distance from Earth to its moon, 29
distances of planets from Sun, 949
International Space Station (ISS), 838
light-year, 29
planetary orbits
Earth, 798
elliptical, 798
Jupiter, 798
Mars, 798
Mercury, 825
Pluto, 798

Aviation

modeling aircraft motion, 777
orbital launches, 856

Biology

alcohol and driving, 447,452
bacterial growth, 479-480, 493
E-coli, 235, 275
blood types, 987-988
bone length, 317-318
cricket chirp rate and temperature, 311
healing of wounds, 437, 451
maternal age versus Down syndrome, 290
muscle force, 764
yeast biomass as function of time, 492

Business

advertising, 318
automobile production, 409, 872
blending coffee, 141
candy bar size, 103
checkout lines, 1006
clothing store, 1008
commissions, 317
cookie orders, 935
copying machines, 146
cost
of can, 364,367
of commodity, 410
of manufacturing, 29, 141, 374, 924-925
marginal, 301, 317
minimizing, 317, 931, 936
of printing, 337
of production, 234, 409, 899, 936
of transporting goods, 246
cost equation, 180, 192
cost function, 282
average, 217
demand
for candy, 192
demand equation, 317,400
depreciation, 402
discount pricing, 91, 92, 410
drive-thru rate
at Burger King, 433
at Citibank, 437, 451
at McDonald's, 438
equipment depreciation, 965
ethanol production, 493
expense computation, 142
farm workers in U.S., 487
Jiffy Lube's car arrival rate, 437,
451
managing a meat market, 931
milk production, 494
mixing candy, 141
mixing nuts, 141
orange juice production, 872
precision ball bearings, 29
presale orders, 856
price markup, 91
of new car, 129
product design, 932
production scheduling, 931
product promotion, 181
profit, 899-900
maximizing, 929-930, 931-932
profit function, 213
rate of return on, 475
restaurant management, 856
revenue, 141, 301, 314-315
airline, 932
of clothing store, 889
daily, 301
from digital music, 259
from football seating, 966
maximizing, 301, 308
monthly, 301
theater, 857
revenue equation, 192
RV rental, 318-319
salary, 410, 955
gross, 212
increases in, 965, 979
sales
commission on, 128-129
of movie theater ticket, 844, 848-849, 856
net, 156
salvage value, 500
straight-line depreciation, 278-279, 282
supply and demand, 279-280, 282
tax, 374
theater attendance, 92
toy truck manufacturing, 924-925
transporting goods, 925
truck rentals, 180, 282-283
unemployment, 1009
wages
of car salesperson, 180
hourly, 89, 91

Calculus

absolute maximum/minimum, 228
area under a curve, $234,260,619$
asymptotes, 346-347
average rate of change in, 230
bending wire into geometric shapes, 264
carrying a ladder around a corner, 633-634
cylinder inscribed in a cone, 264
cylinder inscribed in a sphere, 264
difference quotient, 205-206, 212, 439, 460, 654
express as single quotient in, 77
expressions with rational exponents in, 77
factoring in, 54, 58, 80
filling conical tank, 265
functions approximated by polynomial functions, 342
increasing/decreasing functions, 225-226
inequalities involving absolute value, 134
infinite geometric series, 960
infinite limits, 332
Intermediate Value Theorem, 384,385
limit notation, 580, 582, 960
limits at infinity, 332
local maxima/minima, 227
longest ladder carried around corner, 586, 633
maximizing projectile range, $633,659,664$
maximizing rain gutter construction, 663-664
open box construction, 265
partial fraction decomposition, 902
quadratic equations, 99-100, 102
radians, 509
reducing expression to lowest terms, 72
secant line, 231
Simpson's rule, 309
Snell's Law of Refraction, 634-635
tangent line, 703
the number $e, 431-432$
trigonometric functions, 657-658, 665

Carpentry. See also Construction

pitch, 182

Chemistry, 91

alpha particles, 811
decomposition reactions, 487
drug concentration, 366
gas laws, 193
mixing acids, 146
pH, 450
purity of gold, 142
radioactive decay, 486, 493-494, 500, 932
radioactivity from Chernobyl, 487
reactions, 309
salt solutions, 142,146
sugar molecules, 142
volume of gas, 128

Combinatorics

airport codes, 989
binary codes, 1008
birthday permutations, 991, 995, 996, 1002-1003, 1007, 1008-1009
blouses and skirts combinations, 987
book arrangements, 995
box stacking, 995
code formation, 995
combination locks, 996
committee formation, 993, 995-996, 1008
Senate committees, 996
flag arrangement, 994, 1008
gender composition of children in family, 1000
letter codes, 989
license plate possibilities, $995,1008,1009$
lining up people, 990,995
number formation, 987, 995, 996, 1009
objects selection, 996
seating arrangements, 1008
shirts and ties combinations, 987
telephone numbers, 1008
two-symbol codewords, 986
word formation, 993-994, 996, 1009

Communications

cell phone towers, 495
installing cable TV, 265
international call plan, 283
phone charges, 282
satellite dish, 785-786, 787
spreading of rumors, 437,451
surveillance satellites, 681
tablet service, 245
Touch-Tone phones, 668, 713
wireless data plan, 198, 234-235, 271-272

Computers and computing

comparing tablets, 103
graphics, 765, 900-901
households owning computers, 487
Internet searches, 112
iPod storage capacity, 283
laser printers, 142
three-click rule, 900
website design, 900
website map, 900
Word users, 487

Construction

of border around a garden, 103
of border around a pool, 103
of box, $99-100,102,916$
closed, 269
open, 265
of brick staircase, 979
of can, 398
of coffee can, 143
of cylindrical tube, 916
of enclosures
around garden, 142
around pond, 142
maximizing area of, $304,308,317$
of fencing, 304, 308, 317, 916
minimum cost for, 366
of flashlight, 787
of headlight, 787
of highway, 540, 690, 715
installing cable TV, 265
painting a room, 586
patio dimensions, 103
pitch of roof, 680
of rain gutter, 309, 534-535, 663-664
of ramp, 689
access ramp, 181
of rectangular field enclosure, 308
of stadium, 309, 955
of steel drum, 367
of swimming pool, 37,38
of swing set, 698
of tent, 702
TV dish, 787
vent pipe installation, 798

Cryptography

matrices in, 900

Decorating

Christmas tree, 32

Demographics

birth rate
age of mother and, 311
of unmarried women, 301
diversity index, 450
divorced population, 306-307
marital status, 988
mosquito colony growth, 486
population. See Population
rabbit colony growth, 948

Design

of awning, 691
of box with minimum surface area, 367
of fine decorative pieces, 541
of Little League Field, 518-519
of water sprinkler, 516

Direction

of aircraft, 759, 763
compass heading, 764
for crossing a river, 763
of fireworks display, 810
of lightning strikes, 810
of motorboat, 763
of swimmer, 775

Distance

Bermuda Triangle, 38
bicycle riding, 222
from Chicago to Honolulu, 619
circumference of Earth, 518
between cities, 511-512, 517
between Earth and Mercury, 691
between Earth and Venus, 691
from Earth to a star, 680
of explosion, 811
height
of aircraft, 689, 691
of bouncing ball, 965,979
of bridge, 689
of building, 680
of cloud, 536-537
of CN Tower, 540
of Eiffel Tower, 540
of embankment, 680
of Ferris Wheel rider, 633
of Great Pyramid of Cheops, 38, 691
of helicopter, 715
of hot-air balloon, 540
of Lincoln's caricature on Mt. Rushmore, 540
of mountain, 686, 689
of Mt. Everest, 29
of One World Trade Center, 541
of statue on a building, 537
of tower, 540, 541
of tree, 689
of Washington Monument, 540
of Willis Tower, 680
from home, 222
from Honolulu to Melbourne, Australia, 619
of hot-air balloon
to airport, 716
from intersection, 156
from intersection, 264
length
of guy wire, 540, 542, 697
of lake, 602
of ski lift, 689
limiting magnitude of telescope, 500
to the Moon, 690
nautical miles, 518
pendulum swings, 961,965
to plateau, 540
across a pond, 540
range of airplane, 143
reach of ladder, 540
of rotating beacon, 586
between runners, 689
at sea, 690
of search and rescue, 146
to shore, 540, 602, 690
between skyscrapers, 680
sound to measure, 118-119
stopping, 213, 301, 422
of storm, 145
to tower, 691
traveled by wheel, 37
between two moving vehicles, 156
toward intersection, 264
between two objects, 540
between two planes, 262
visibility of Gibb's Hill Lighthouse beam, 38,677-678, 681
visual, 38
walking, 222
width
of gorge, 539
of Mississippi River, 680
of river, 536, 602

Economics

Consumer Price Index (CPI), 477
demand equations, 400
federal stimulus package of 2009, 476
inflation, 476
IS-LM model in, 857
marginal propensity to consume, 966
multiplier, 966
national debt, 235
participation rate, 213
per capita federal debt, 476
poverty rates, 341
poverty threshold, 157
relative income of child, 900
unemployment, 1009

Education

age distribution of community college, 1009
college costs, 476, 965-966
college tuition and fees, 899
computing grades, 129
degrees awarded, 985
doctorates, 1006
faculty composition, 1007
field trip, 374
fraternity purchase, 103
funding a college education, 500
GPA and work relationship, 103
grades, 91
learning curve, 438, 451
maximum level achieved, 937-938
median earnings and level of, 103
multiple-choice test, 995
probability of acceptance to college, 1009
spring break, 931
student loan, 270
interest on, 899
true/false test, 995
video games and grade-point average, 289

Electricity, 91

alternating current (ac), 602, 654
alternating current (ac) circuits, 577,595
alternating current (ac) generators, 577-578
charging a capacitor, 713
cost of, 243
current in $R C$ circuit, 438
current in $R L$ circuit, 438, 451
impedance, 112
Kirchhoff's Rules, 857, 873
Ohm's law, 126
parallel circuits, 112
resistance in, 352
rates for, 129, 180
resistance, 70, 72, 193, 196, 352
voltage
foreign, 29
household, 133
U.S., 29

Electronics. See also Computers and computing

Blu-ray drive, 516
DVD drive, 516
loudspeakers, 712
microphones, 166
sawtooth curve, 664, 713

Energy

nuclear power plant, 810-811
solar, 166, 771-772
solar heat, 788
thermostat control, 259

Engineering

bridges
clearance, 578
Golden Gate, 305-306
parabolic arch, 317, 788
semielliptical arch, 797, 798, 840
suspension, 309, 787-788
crushing load, 119
drive wheels of engine, 681
electrical, 529
Gateway Arch (St. Louis), 788
grade
of mountain trail, 917
of road, 182
horsepower, 193
lean of Leaning Tower of Pisa, 690
maximum weight supportable by pine, 190
moment of inertia, 668
piston engines, 539
product of inertia, 664
road system, 728
rods and pistons, 698
safe load for a beam, 193
searchlight, $642,788,840$
whispering galleries, 797

Entertainment

Demon Roller Coaster customer rate, 438
movie theater, 618
theater revenues, 857

Environment

endangered species, 437
lake pollution control laws, 948
oil leakage, 409
Finance, 91. See also Investment(s)
balancing a checkbook, 29
bills in wallet, 1009
cable rates, 494
clothes shopping, 937
college costs, 476, 965-966
computer system purchase, 475
cost
of car, 92, 180
of car rental, 246
of electricity, 243
of fast food, 856
of land, 715
minimizing, 317,366
of natural gas, 245
of pizza, 92
of printing, 337
of trans-Atlantic travel, 212-213, 221
of triangular lot, 702
cost equation, 192
cost function, 282
cost minimization, 301
credit cards
balance on, 909
debt, 948
interest on, 475
payment, 246,948
depreciation, 437
of car, 467, 503
discounts, 410
division of money, 88,91
effective rate of interest, 472
electricity rates, 180
federal stimulus package of 2009, 476
financial planning, 136-137, 856, 869-870, 872
foreign exchange, 410
fraternity purchase, 103
funding a college education, 500
future value of money, 341-342
gross salary, 212
income versus crime rate, 496
inheritance, 146
life cycle hypothesis, 310
loans, 141
car, 948
interest on, 81,136, 145, 147-148, 270, 899
repayment of, 475
student, 899
median earnings and level of education, 103
mortgages, 477
fees, 246
interest rates on, 476
payments, 189, 192, 196
second, 476
price appreciation of homes, 475
prices of fast food, 858
refunds, 856
revenue equation, 192
revenue maximization, 301, 302-304, 308
rich man's promise, 966
salary options, 966
sales commission, 128-129
saving
for a car, 475
for a home, 965
savings accounts interest, 475
selling price of a home, 197
sinking fund, 965-966
taxes, 282
e-filing returns, 235
federal income, 246, 410, 422
luxury, 282
truck rentals, 281
used-car purchase, 475
water bills, 129

Food and nutrition

animal, 932
calories, 92
candy, 288
color mix of candy, 1009
cooler contents, 1009
cooling time of pizza, 486
fast food, 856,858
Girl Scout cookies, 1006
hospital diet, 857,872
ice cream, 931
"light" foods, 129
number of possible meals, 985-986
raisins, 288-289
soda and hot dogs buying combinations, 283
warming time of beer stein, 487

Forestry

wood product classification, 485

Games

coin toss, 999
die rolling, 998-999, 1000, 1009
grains of wheat on a chess board, 966
lottery, 1009, 1010-1011

Gardens and gardening. See also Landscaping

border around, 103
enclosure for, 142

Geography

area of Bermuda Triangle, 703
area of lake, 703, 715
inclination of mountain trail, 677, 715

Geology

earthquakes, 452

Geometry

angle between two lines, 654
balloon volume, 409
box volume, 773
circle
area of, 141, 703
center of, 188
circumference of, 28, 141
equation of, 883
inscribed in square, 263
length of chord of, 698
radius of, 188, 916
collinear points, 883
cone volume, 193, 410
cube
length of edge of, 389
surface area of, 29
volume of, 29
cylinder
inscribing in cone, 264
inscribing in sphere, 264
volume of, 193, 410
Descartes's method of equal roots, 916-917
equation of line, 883
ladder angle, 716
polygon
area of, 883
diagonals of, 103
Pythagorean Theorem, 102
quadrilateral area, 717
rectangle
area of, 28, 212, 261-262, 269
dimensions of, $92,102,146,916$
inscribed in circle, 263
inscribed in ellipse, 798
inscribed in semicircle, 263, 664
perimeter of, 28
semicircle inscribed in, 264
semicircle area, $702,703,717$
sphere
surface area of, 28
volume of, 28
square
area of, 37,141
diagonals of, 156
perimeter of, 141
surface area
of balloon, 409
of cube, 29
of sphere, 28
triangle
area of, $28,702,703,717,883$
circumscribing, 692
equilateral, 28,156
inscribed in circle, 264
isosceles, 212, 530, 717, 916
medians of, 155
Pascal's, 948
perimeter of, 28

triangle (continued)

right, 539, 679
sides of, 717

Government

federal debt, 235
per capita, 476
federal income tax, 213, 246, 410, 422
e-filing returns, 235
federal stimulus package of 2009, 476
federal tax withholding, 129
first-class mail, 247

Health. See also Medicine

age versus total cholesterol, 495
blood pressure, 633
cigarette use among teens, 181
exercising, 129
expenditures on, 213
heartbeats during exercise, 276-277
ideal body weight, 422
life cycle hypothesis, 310
life expectancy, 128
Home improvement. See also Construction
painting a house, 858

Housing

apartment rental, 310
number of rooms in, 212
price appreciation of homes, 475
Investment(s), 88, 91, 141, 145
annuity, 962-963, 965
in bonds, 932
Treasuries, 872, 873, 922, 924, 926
zero-coupon, 473, 476
in CDs, 472, 932
compound interest on, 468-469, 470,
471-472, 475-476
diversified, 858
dividing, 247
doubling of, 473-474, 476
effective rate of interest, 472
finance charges, 475
in fixed-income securities, 476, 932
401K, 965,979
growth rate for, 475-476
IRA, 476, 962-963, 965
mutual fund growth over time, 490
return on, 475, 931, 932
savings account, 471-472
in stock
analyzing, 320
appreciation, 475
beta, 273, 320
NASDAQ stocks, 995
NYSE stocks, 995
portfolios of, 988
price of, 966
time to reach goal, 475, 477
tripling of, 474, 476

Landscaping. See also Gardens and gardening

height of tree, 689
pond enclosure, 317
rectangular pond border, 317
removing stump, 765
tree planting, 872
watering lawn, 516

Law and law enforcement

income vs. crime rate, 496
motor vehicle thefts, 1006
violent crimes, 213

Leisure and recreation

amusement park ride, 516
cable TV, 265
rates, 494
community skating rink, 270
Ferris wheel, 187, 633, 691, 712
field trip, 374
video games and grade-point average, 289

Measurement

optical methods of, 642
of rainfall, 772

Mechanics, 91. See also Physics

Medicine. See also Health

age versus total cholesterol, 495
blood pressure, 633
cancer
breast, 493
pancreatic, 437
drug concentration, 234, 366
drug medication, 437, 451
healing of wounds, 437,451
spreading of disease, 501

Meteorology

weather balloon height and atmospheric pressure, 491

Miscellaneous

banquet seating, 931
bending wire, 916
biorhythms, 578
carrying a ladder around a corner, 529, 586, 633-634
citrus ladders, 955
coffee container, 504
cross-sectional area of beam, 213, 220
curve fitting, $857,872,935$
diameter of copper wire, 29
drafting error, 156
land dimensions, 689
Mandelbrot sets, 751
motor, 29
pet ownership, 1006
reading books, 133
surface area of balloon, 409
volume of balloon, 409
wire enclosure area, 264
Mixtures. See also Chemistry
blending coffees, 137-138, 141, 147,925, 935
blending teas, 141
cement, 143
mixed nuts, $141,856,925,935$
mixing candy, 141
solutions, 856
water and antifreeze, 142
Motion, 713. See also Physics
catching a train, 840
on a circle, 516
of Ferris Wheel rider, 633
of golf ball, 220-221
minute hand of clock, 516,602
objects approaching intersection, 836-837
of pendulum, 713
revolutions of circular disk, 37
simulating, 831
tortoise and the hare race, 916
uniform, 138-139, 141, 836-837

Motor vehicles

alcohol and driving, 447, 452
angular speed of race car, 602
approaching intersection, 836-837
automobile production, 409,872
average car speed, 143
brake repair with tune-up, 1009
braking load, 772, 775
crankshafts, 690
depreciation, 402
depreciation of, 467, 503
with Global Positioning System (GPS), 501
loans for, 948
markup of new car, 129
runaway car, 315
speed and miles per gallon, 310-311
spin balancing tires, 517
stopping distance, 213, 301, 422
theft of, 1006
used-car purchase, 475
windshield wiper, 516

Music

revenues from, 259

Navigation

avoiding a tropical storm, 697
bearing, 678, 696
of aircraft, 680
of ship, 680,715
charting a course, 764
commercial, 689
compass heading, 764
crossing a river, 763,764
error in
correcting, 694-695, 715
time lost due to, 689
rescue at sea, 686-687, 689-690
revising a flight plan, 697

Oceanography

tides, 596

Optics

angle of refraction, 634-635
bending light, 635
Brewster angle, 635
index of refraction, 634-635
intensity of light, 193
laser beam, 679
laser projection, 664
lensmaker's equation, 72
light obliterated through glass, 437
mirrors, 811
reflecting telescope, 788

Pediatrics

height vs. head circumference, 289, 422

Pharmacy

vitamin intake, 857,873

Photography

camera distance, 541

Physics, 91

angle of elevation of Sun, 679
angle of inclination, 772
bouncing balls, 979
braking load, 772
damped motion, 708, 716
diameter of atom, 29
Doppler effect, 366
effect of elevation on weight, 221
falling objects, 192
force, 141, 763
of attraction between two bodies, 192
to hold a wagon on a hill, 769-770
muscle, 764
resultant, 763
of wind on a window, 191, 193
gravity, 352, 374
on Earth, 212, 422
on Jupiter, 212
harmonic motion, 707
heat loss, 190, 196
heat transfer, 633
horsepower, 193
inclination of mountain trail, 677
inclined ramp, 764
intensity of light, 146, 193
kinetic energy, 141, 193
maximum weight supportable by pine, 190
missile trajectory, 320
moment of inertia, 668
motion of object, 707
Newton's law, 192
Ohm's law, 126
pendulum motion, 119, 516, 713, 961
period, 259-260, 422
simple pendulum, 192
pressure, 141, 192
product of inertia, 664
projectile motion, 102-103, 304-305, 308-309, 539, 552, 633, 634, 659, 664,
668, 759, 829-830, 836, 837, 840
artillery, 315, 624
hit object, 836
thrown object, 836
safe load for a beam, 193
simple harmonic motion, 716
simulating motion, 831
sound to measure distance, 118-119
speed of sound, 133
static equilibrium, 760-761, 764, 765, 775
static friction, 764
stress of materials, 193
stretching a spring, 192
tension, 760-761, 764, 775, 776, 971
thrown object, 146, 759
ball, 310, 314
truck pulls, 765
uniform motion, 141, 146, 264, 836-837, 840
velocity down inclined planes, 80
vertically propelled object, 314
vibrating string, 192
wavelength of visible light, 29
weight, 193, 196
of a boat, 763
of a car, 763
of a piano, 760
work, 141

Play

swinging, 717
wagon pulling, 763, 770
Population. See also Demographics
bacteria, 439, 486, 493
decline in, 486
E-coli growth, 235, 275
of endangered species, 487
of fruit fly, 484
as function of age, 212
growth in, 486
insect, 352, 486
of trout, 948
of United States, 467, 494, 981
of world, 467, 495, 500, 939

Probability

of birthday shared by people in a room, 487
checkout lines, 1006
classroom composition, 1006
exponential, 433, 437-438, 451
household annual income, 1006
Poisson, 438
"Price is Right" games, 1006
of winning a lottery, 1007

Psychometrics

IQ tests, 129

Pyrotechnics

fireworks display, 810

Rate. See also Speed

of car, 517
catching a bus, 836
catching a train, 836
current of stream, 857
of emptying
fuel tanks, 146
oil tankers, 143
a pool, 143
a tub, 143
to keep up with the Sun, 518
revolutions per minute
of bicycle wheels, 517
of pulleys, 519
speed
average, 143
of current, 141
of cyclist, 143
of motorboat, 141
of moving walkways, 141-142
per gallon rate and, 310-311
of plane, 143
of sound, 133
of water use, 260

Real estate

commission, 128-129
cost of land, 715
cost of triangular lot, 702
housing prices, 398
mortgage loans, 477

Recreation

bungee jumping, 374
Demon Roller Coaster customer rate, 438
online gambling, 1006

Security

security cameras, 680

Seismology

calibrating instruments, 840

Sequences. See also Combinatorics

ceramic tile floor design, 953-954
Drury Lane Theater, 955
football stadium seating, 955
seats in amphitheater, 955

Speed

of aircraft, 763
angular, 517, 602
of current, 517,935
as function of time, 222, 264
linear, 514
on Earth, 517
of Moon, 517
revolutions per minute of pulley, 517
of rotation of lighthouse beacons, 602
of swimmer, 775
of truck, 679
of wheel pulling cable cars, 517
wind, 856

Sports

baseball, 836, 837, 996, 1008
diamond, 156
dimensions of home plate, 702
field, 697, 698
Little League, 156, 518-519
on-base percentage, 284-285
stadium, 697
World Series, 996
basketball, 996
free throws, 220, 680-681
granny shots, 220
biathlon, 143
bungee jumping, 374
calculating pool shots, 541
distance between runners, 689
exacta betting, 1009
football, 142, 798
defensive squad, 996
field design, 103
seating revenue, 966
golf, 220-221, 496, 829-830, 836
distance to the green, 696
sand bunkers, 624
hammer throw, 603
Olympic heroes, 143
races, 142, 146, 913-914, 916
relay runners, 1008
swimming, 717, 775
tennis, 142

Statistics. See Probability
 Surveys

of appliance purchases, 987
data analysis, 984,987
stock portfolios, 988
of summer session attendance, 987
of TV sets in a house, 1006

Temperature

of air parcel, 955
body, 29, 133
conversion of, 410, 422
cooling time of pizza, 486
cricket chirp rate and, 311
Fahrenheit from Celsius conversion, 87
measuring, 180-181
after midnight, 341
monthly, 595-596, 602
relationship between scales, 259
sinusoidal function from, 591-592
of skillet, 500
warming time of beer stein, 487
wind chill factor, 501

Time

for beer stein to warm, 487
for block to slide down inclined plane, 539
Ferris Wheel rider height as function of, 633
to go from an island to a town, 265
hours of daylight, 400-401, 505, 593-594, 597, 604, 618
for pizza to cool, 486
for rescue at sea, 146
of sunrise, 518, 618
of trip, 529, 541

Transportation

deicing salt, 624
Niagara Falls Incline Railway, 680

Travel. See also Air travel; Navigation

bearing, 715
drivers stopped by the police, 503
driving to school, 192
parking at O'Hare International
Airport, 245

Volume

of gasoline in tank, 80
of ice in skating rink, 270
of water in cone, 265

Weapons

artillery, 315, 624
cannons, 320

Weather

atmospheric pressure, 437, 451
avoiding a tropical storm, 697
cooling air, 955
hurricanes, 341, 595
lightning and thunder, 145
lightning strikes, 807-808, 810
probability of rain, 1002
rainfall measurement, 772
relative humidity, 438
weather satellites, 187
wind chill, 246-247, 501
Work, 770
computing, 770, 771,775
constant rate jobs, 936
GPA and, 103
pulling a wagon, 770
ramp angle, 772
wheelbarrow push, 763
working together, 140, 142, 146

Review

A Look Ahead

Chapter R, as the title states, contains review material. Your instructor may choose to cover all or part of it as a regular chapter at the beginning of your course or later as a just-in-time review when the content is required. Regardless, when information in this chapter is needed, a specific reference to this chapter will be made so you can review.

Outline

R. 1 Real Numbers
R. 2 Algebra Essentials
R. 3 Geometry Essentials
R. 4 Polynomials
R. 5 Factoring Polynomials
R. 6 Synthetic Division
R. 7 Rational Expressions
R. 8 nth Roots; Rational Exponents

R. 1 Real Numbers

PREPARING FOR THIS TEXT Before getting started, read "To the Student" at the front of this text.

OBJECTIVES 1 Work with Sets (p. 2)
2 Classify Numbers (p.4)
3 Evaluate Numerical Expressions (p. 8)
4 Work with Properties of Real Numbers (p. 9)

1 Work with Sets

A set is a well-defined collection of distinct objects. The objects of a set are called its elements. By well-defined, we mean that there is a rule that enables us to determine whether a given object is an element of the set. If a set has no elements, it is called the empty set, or null set, and is denoted by the symbol \varnothing.

For example, the set of digits consists of the collection of numbers $0,1,2,3,4$, $5,6,7,8$, and 9 . If we use the symbol D to denote the set of digits, then we can write

$$
D=\{0,1,2,3,4,5,6,7,8,9\}
$$

In this notation, the braces $\{\quad\}$ are used to enclose the objects, or elements, in the set. This method of denoting a set is called the roster method. A second way to denote a set is to use set-builder notation, where the set D of digits is written as

EXAMPLE I Using Set-builder Notation and the Roster Method

(a) $E=\{x \mid x$ is an even digit $\}=\{0,2,4,6,8\}$
(b) $O=\{x \mid x$ is an odd digit $\}=\{1,3,5,7,9\}$

Because the elements of a set are distinct, we never repeat elements. For example, we would never write $\{1,2,3,2\}$; the correct listing is $\{1,2,3\}$. Because a set is a collection, the order in which the elements are listed is immaterial. $\{1,2,3\}$, $\{1,3,2\},\{2,1,3\}$, and so on, all represent the same set.

If every element of a set A is also an element of a set B, then A is a subset of B, which is denoted $A \subseteq B$. If two sets A and B have the same elements, then A equals B, which is denoted $A=B$.

For example, $\{1,2,3\} \subseteq\{1,2,3,4,5\}$ and $\{1,2,3\}=\{2,3,1\}$.

DEFINITION
If A and B are sets, the intersection of A with B, denoted $A \cap B$, is the set consisting of elements that belong to both A and B. The union of A with B, denoted $A \cup B$, is the set consisting of elements that belong to either A or B, or both.

EXAMPLE 2 Finding the Intersection and Union of Sets

Let $A=\{1,3,5,8\}, B=\{3,5,7\}$, and $C=\{2,4,6,8\}$. Find:
(a) $A \cap B$
(b) $A \cup B$
(c) $B \cap(A \cup C)$

Solution

(a) $A \cap B=\{1,3,5,8\} \cap\{3,5,7\}=\{3,5\}$
(b) $A \cup B=\{1,3,5,8\} \cup\{3,5,7\}=\{1,3,5,7,8\}$
(c) $B \cap(A \cup C)=\{3,5,7\} \cap[\{1,3,5,8\} \cup\{2,4,6,8\}]$

$$
=\{3,5,7\} \cap\{1,2,3,4,5,6,8\}=\{3,5\}
$$

Now Work problem 15
Usually, in working with sets, we designate a universal set U, the set consisting of all the elements that we wish to consider. Once a universal set has been designated, we can consider elements of the universal set not found in a given set.

DEFINITION

If A is a set, the complement of A, denoted \bar{A}, is the set consisting of all the elements in the universal set that are not in A.*

EXAMPLE 3 Finding the Complement of a Set

If the universal set is $U=\{1,2,3,4,5,6,7,8,9\}$ and if $A=\{1,3,5,7,9\}$, then $\bar{A}=\{2,4,6,8\}$.

It follows from the definition of complement that $A \cup \bar{A}=U$ and $A \cap \bar{A}=\varnothing$. Do you see why?

Now Work problem 19

It is often helpful to draw pictures of sets. Such pictures, called Venn diagrams, represent sets as circles enclosed in a rectangle, which represents the universal set. Such diagrams often help us to visualize various relationships among sets. See Figure 1.

If we know that $A \subseteq B$, we might use the Venn diagram in Figure 2(a). If we know that A and B have no elements in common-that is, if $A \cap B=\varnothing$-we might use the Venn diagram in Figure 2(b). The sets A and B in Figure 2(b) are said to be disjoint.

(a) $A \subseteq B$ subset

Figures 3(a), 3(b), and 3(c) use Venn diagrams to illustrate the definitions of intersection, union, and complement, respectively.

[^0]
2 Classify Numbers

It is helpful to classify the various kinds of numbers that we deal with as sets. The counting numbers, or natural numbers, are the numbers in the set $\{1,2,3,4, \ldots\}$. (The three dots, called an ellipsis, indicate that the pattern continues indefinitely.) As their name implies, these numbers are often used to count things. For example, there are 26 letters in our alphabet; there are 100 cents in a dollar. The whole numbers are the numbers in the set $\{0,1,2,3, \ldots\}$-that is, the counting numbers together with 0 . The set of counting numbers is a subset of the set of whole numbers.

DEFINITION

The integers are the set of numbers $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$.

These numbers are useful in many situations. For example, if your checking account has $\$ 10$ in it and you write a check for $\$ 15$, you can represent the current balance as $-\$ 5$.

Each time we expand a number system, such as from the whole numbers to the integers, we do so in order to be able to handle new, and usually more complicated, problems. The integers enable us to solve problems requiring both positive and negative counting numbers, such as profit/loss, height above/below sea level, temperature above/below $0^{\circ} \mathrm{F}$, and so on.

But integers alone are not sufficient for all problems. For example, they do not answer the question "What part of a dollar is 38 cents?" To answer such a question, we enlarge our number system to include rational numbers. For example, $\frac{38}{100}$ answers the question "What part of a dollar is 38 cents?"

DEFINITION
A rational number is a number that can be expressed as a quotient $\frac{a}{b}$ of two integers. The integer a is called the numerator, and the integer b, which cannot be 0 , is called the denominator. The rational numbers are the numbers in the set $\left\{x \left\lvert\, x=\frac{a}{b}\right.\right.$, where a, b are integers and $\left.b \neq 0\right\}$.

Examples of rational numbers are $\frac{3}{4}, \frac{5}{2}, \frac{0}{4},-\frac{2}{3}$, and $\frac{100}{3}$. Since $\frac{a}{1}=a$ for any integer a, it follows that the set of integers is a subset of the set of rational numbers.

Rational numbers may be represented as decimals. For example, the rational numbers $\frac{3}{4}, \frac{5}{2},-\frac{2}{3}$, and $\frac{7}{66}$ may be represented as decimals by merely carrying out the indicated division:
$\frac{3}{4}=0.75 \quad \frac{5}{2}=2.5 \quad-\frac{2}{3}=-0.666 \ldots=-0 . \overline{6} \quad \frac{7}{66}=0.1060606 \ldots=0.1 \overline{06}$ Notice that the decimal representations of $\frac{3}{4}$ and $\frac{5}{2}$ terminate, or end. The decimal representations of $-\frac{2}{3}$ and $\frac{7}{66}$ do not terminate, but they do exhibit a pattern of repetition. For $-\frac{2}{3}$, the 6 repeats indefinitely, as indicated by the bar over the 6 ; for $\frac{7}{66}$, the block 06 repeats indefinitely, as indicated by the bar over the 06 . It can be shown that every rational number may be represented by a decimal that either terminates or is nonterminating with a repeating block of digits, and vice versa.

On the other hand, some decimals do not fit into either of these categories. Such decimals represent irrational numbers. Every irrational number may be represented by a decimal that neither repeats nor terminates. In other words, irrational numbers cannot be written in the form $\frac{a}{b}$, where a, b are integers and $b \neq 0$.

Irrational numbers occur naturally. For example, consider the isosceles right triangle whose legs are each of length 1 . See Figure 4. The length of the hypotenuse is $\sqrt{2}$, an irrational number.

Also, the number that equals the ratio of the circumference C to the diameter d of any circle, denoted by the symbol π (the Greek letter pi), is an irrational number. See Figure 5.

Figure 4

Figure $5 \pi=\frac{C}{d}$

DEFINITION

The set of real numbers is the union of the set of rational numbers with the set of irrational numbers.

Figure 6 shows the relationship of various types of numbers.*

Figure 6

EXAMPLE 4 Classifying the Numbers in a Set

List the numbers in the set

$$
\left\{-3, \frac{4}{3}, 0.12, \sqrt{2}, \pi, 10,2.151515 \ldots(\text { where the block } 15 \text { repeats })\right\}
$$

that are
(a) Natural numbers
(b) Integers
(c) Rational numbers
(d) Irrational numbers
(e) Real numbers

Solution (a) 10 is the only natural number.
(b) -3 and 10 are integers.
(c) $-3,10, \frac{4}{3}, 0.12$, and $2.151515 \ldots$ are rational numbers.
(d) $\sqrt{2}$ and π are irrational numbers.
(e) All the numbers listed are real numbers.

Now Work problem 2
25
*The set of real numbers is a subset of the set of complex numbers. We discuss complex numbers in Chapter 1, Section 1.3.

Approximations

Every decimal may be represented by a real number (either rational or irrational), and every real number may be represented by a decimal.

In practice, the decimal representation of an irrational number is given as an approximation. For example, using the symbol \approx (read as "approximately equal to"), we can write

$$
\sqrt{2} \approx 1.4142 \quad \pi \approx 3.1416
$$

In approximating decimals, we either round off or truncate to a given number of decimal places.* The number of places establishes the location of the final digit in the decimal approximation.

Truncation: Drop all of the digits that follow the specified final digit in the decimal.
Rounding: Identify the specified final digit in the decimal. If the next digit is 5 or more, add 1 to the final digit; if the next digit is 4 or less, leave the final digit as it is. Then truncate following the final digit.

EXAMPLE 5 Approximating a Decimal to Two Places

Approximate 20.98752 to two decimal places by
(a) Truncating
(b) Rounding

Solution For 20.98752, the final digit is 8 , since it is two decimal places from the decimal point.
(a) To truncate, we remove all digits following the final digit 8 . The truncation of 20.98752 to two decimal places is 20.98 .
(b) The digit following the final digit 8 is the digit 7 . Since 7 is 5 or more, we add 1 to the final digit 8 and truncate. The rounded form of 20.98752 to two decimal places is 20.99 .

EXAMPLE 6 Approximating a Decimal to Two and Four Places

	Rounded to Two Decimal Places	Rounded to Four Decimal Places	Truncated to Two Decimal Places	Truncated to Four Decimal Places
Number	3.14	3.1416	3.14	3.1415
(a) 3.14159	0.06	0.0561	0.05	0.0561
(b) 0.056128	893.46	893.4613	893.46	893.4612
(c) 893.46125				

Now Work problem 29

Calculators

Calculators are incapable of displaying decimals that contain a large number of digits. For example, some calculators are capable of displaying only eight digits. When a number requires more than eight digits, the calculator either truncates or rounds.

[^1]To see how your calculator handles decimals, divide 2 by 3 . How many digits do you see? Is the last digit a 6 or a 7 ? If it is a 6 , your calculator truncates; if it is a 7 , your calculator rounds.

There are different kinds of calculators. An arithmetic calculator can only add, subtract, multiply, and divide numbers; therefore, this type is not adequate for this course. Scientific calculators have all the capabilities of arithmetic calculators and also contain function keys labeled $\ln , \log , \sin , \cos , \tan , x^{y}$, inv, and so on. As you proceed through this text, you will discover how to use many of the function keys. Graphing calculators have all the capabilities of scientific calculators and contain a screen on which graphs can be displayed.

For those who have access to a graphing calculator, we have included comments, examples, and exercises marked with a in , indicating that a graphing calculator is required. We have also included an appendix that explains some of the capabilities of a graphing calculator. The comments, examples, and exercises may be omitted without loss of continuity, if so desired.

Operations

In algebra, we use letters such as x, y, a, b, and c to represent numbers. The symbols used in algebra for the operations of addition, subtraction, multiplication, and division are,,$+- \cdot$, and $/$. The words used to describe the results of these operations are sum, difference, product, and quotient. Table 1 summarizes these ideas.

Table 1

Operation	Symbol	Words
Addition	$a+b$	Sum: a plus b
Subtraction	$a-b$	Difference: a minus b
Multiplication	$a \cdot b,(a) \cdot b, a \cdot(b),(a) \cdot(b)$, $a b,(a) b, a(b),(a)(b)$ Division	Product: a times b
	Quotient: a divided by b	

In algebra, we generally avoid using the multiplication sign \times and the division sign \div so familiar in arithmetic. Notice also that when two expressions are placed next to each other without an operation symbol, as in $a b$, or in parentheses, as in $(a)(b)$, it is understood that the expressions, called factors, are to be multiplied.

We also prefer not to use mixed numbers in algebra. When mixed numbers are used, addition is understood; for example, $2 \frac{3}{4}$ means $2+\frac{3}{4}$. In algebra, use of a mixed number may be confusing because the absence of an operation symbol between two terms is generally taken to mean multiplication. The expression $2 \frac{3}{4}$ is therefore written instead as 2.75 or as $\frac{11}{4}$.

The symbol =, called an equal sign and read as "equals" or "is," is used to express the idea that the number or expression on the left of the equal sign is equivalent to the number or expression on the right.

EXAMPLE 7 Writing Statements Using Symbols

(a) The sum of 2 and 7 equals 9 . In symbols, this statement is written as $2+7=9$.
(b) The product of 3 and 5 is 15 . In symbols, this statement is written as $3 \cdot 5=15$.

3 Evaluate Numerical Expressions

Consider the expression $2+3 \cdot 6$. It is not clear whether we should add 2 and 3 to get 5 , and then multiply by 6 to get 30 ; or first multiply 3 and 6 to get 18 , and then add 2 to get 20 . To avoid this ambiguity, we have the following agreement.

We agree that whenever the two operations of addition and multiplication separate three numbers, the multiplication operation will always be performed first, followed by the addition operation.

For $2+3 \cdot 6$, then, we have

$$
2+3 \cdot 6=2+18=20
$$

EXAMPLE 8 Finding the Value of an Expression

Evaluate each expression.
(a) $3+4 \cdot 5$
(b) $8 \cdot 2+1$
(c) $2+2 \cdot 2$

Solution

(a) $3+4 \cdot 5 \underset{\uparrow}{\uparrow} 3+20=23$
(b) $8 \cdot 2+1 \underset{\uparrow}{\underset{\uparrow}{\text { Multiply first }}} \underset{ }{=} 16+1=17$
(c) $2+2 \cdot 2=2+4=6$
amen Now Work problem 53

When we want to indicate adding 3 and 4 and then multiplying the result by 5 , we use parentheses and write $(3+4) \cdot 5$. Whenever parentheses appear in an expression, it means "perform the operations within the parentheses first!"

EXAMPLE 9 Finding the Value of an Expression

(a) $(5+3) \cdot 4=8 \cdot 4=32$
(b) $(4+5) \cdot(8-2)=9 \cdot 6=54$

When we divide two expressions, as in

$$
\frac{2+3}{4+8}
$$

it is understood that the division bar acts like parentheses; that is,

$$
\frac{2+3}{4+8}=\frac{(2+3)}{(4+8)}
$$

Rules for the Order of Operations

1. Begin with the innermost parentheses and work outward. Remember that in dividing two expressions, we treat the numerator and denominator as if they were enclosed in parentheses.
2. Perform multiplications and divisions, working from left to right.
3. Perform additions and subtractions, working from left to right.

EXAMPLE 10 Finding the Value of an Expression

Evaluate each expression.
(a) $8 \cdot 2+3$
(b) $5 \cdot(3+4)+2$
(c) $\frac{2+5}{2+4 \cdot 7}$
(d) $2+[4+2 \cdot(10+6)]$

Solution

(a) $8 \cdot 2+3=16+3=19$

Multiply first
(b) $5 \cdot(3+4)+2 \underset{\uparrow}{=} 5 \cdot 7+2 \underset{\uparrow}{=} 35+2=37$

Parentheses first Multiply before adding
(c) $\frac{2+5}{2+4 \cdot 7}=\frac{2+5}{2+28}=\frac{7}{30}$
(d) $2+[4+2 \cdot(10+6)]=2+[4+2 \cdot(16)]$

$$
=2+[4+32]=2+[36]=38
$$

Be careful if you use a calculator. For Example 10(c), you need to use parentheses. See Figure 7.* If you don't, the calculator will compute the expression

$$
2+\frac{5}{2}+4 \cdot 7=2+2.5+28=32.5
$$

giving a wrong answer.
am Now Work problems 59 and 67

4 Work with Properties of Real Numbers

The equal sign is used to mean that one expression is equivalent to another. Four important properties of equality are listed next. In this list, a, b, and c represent real numbers.

1. The reflexive property states that a number equals itself; that is, $a=a$.
2. The symmetric property states that if $a=b$, then $b=a$.
3. The transitive property states that if $a=b$ and $b=c$, then $a=c$.
4. The principle of substitution states that if $a=b$, then we may substitute b for a in any expression containing a.

Now, let's consider some other properties of real numbers.

EXAMPLE II Commutative Properties

(a) $3+5=8$
$5+3=8$
(b) $2 \cdot 3=6$
$3+5=5+3$
$3 \cdot 2=6$
$2 \cdot 3=3 \cdot 2$

This example illustrates the commutative property of real numbers, which states that the order in which addition or multiplication takes place does not affect the final result.

[^2]
[^0]: *Some books use the notation A^{\prime} for the complement of A.

[^1]: * Sometimes we say "correct to a given number of decimal places" instead of "truncate."

[^2]: * Notice that we converted the decimal to its fraction form. Another option, when using a TI-84 Plus C, is to use the fraction template under the MATH button to enter the expression as it appears in Example 10(c). Consult your manual to see how to enter such expressions on your calculator.

